class CClientManager
{
public:
CClientManager(void);
virtual ~CClientManager();
public:
int n;
};//错误原因在这
一、SQLite简介
SQLite是一个包含在C库中的轻量级数据库。它并不需要独立的维护进程,并且允许使用非标准变体(nonstandard variant)的SQL查询语句来访问数据库。一些应用可是使用SQLite保存内部数据。它也可以在构建应用原型的时候使用,以便于以后转移到更大型的数据库,比如PostgreSQL或者Oracle。
sqlite3模块由Gerhard Häring编写,提供了一个SQL接口,这个接口的设计遵循了由PEP 249描述的DB-API 2.0说明书。
二、创建并打开数据库
为了使用这个模块,必须先创建一个连接(Connection)对象来代表数据库。在以下的例子中,数据将会被保存在 example.db 文件中:
2 conn = sqlite3.connect('example.db')
如果指定的数据库存在,就会直接打开这个数据库,否则将新建一再打开。
也可以提供专用名 :memory: 来在内存中建立数据库。
三、数据库连接对象
一旦拥有了连接(Connection)对象,就可以创建游标(Cursor)对象并调用他的execute()方法来执行SQL语句:
2
3 # Create table
4 c.execute('''CREATE TABLE stocks
5 (date text, trans text, symbol text, qty real, price real)''')
6
7 # Insert a row of data
8 c.execute("INSERT INTO stocks VALUES ('2006-01-05','BUY','RHAT',100,35.14)")
9
10 # Save (commit) the changes
11 conn.commit()
12
13 # We can also close the connection if we are done with it.
14 # Just be sure any changes have been committed or they will be lost.
15 conn.close()
保存后的数据是持久的,并且可以在以后的访问中可用。
四、增删改查
1.建(create)表
上面语句创建了一个叫catalog的表,它有一个主键id,一个pid,和一个name,name是不可以重复的,以及一个nickname默认为NULL。
2.删除表(DROP),清空表(TRUNCATE)
上面语句将catalog表删除。
另外SQLite中没有清空表的操作,使用如下方式替代:
3.插入(insert)数据,更改(uptate)数据
通常SQL语句中会用到python变量作为值(value)。不建议直接使用python的字符串运算来构造查询语句,因为这样是不安全的,会使你的程序容易受到SQL注入攻击。
可以使用DB-API提供的参数代换。在想使用值(value)的地方放置一个'?'作为占位符,然后提供一个由值(value)组成的元组作为游标(cursor)中execute()方法的第二个参数。(其他的数据库模块可能使用别的占位符,比如 '%s' 或者 ':1')
2 purchases = [('2006-03-28', 'BUY', 'IBM', 1000, 45.00),
3 ('2006-04-05', 'BUY', 'MSFT', 1000, 72.00),
4 ('2006-04-06', 'SELL', 'IBM', 500, 53.00),
5 ]
6 c.executemany('INSERT INTO stocks VALUES (?,?,?,?,?)', purchases)
7
8 c.execute("UPDATE catalog SET trans='SELL' WHERE symbol = 'IBM'")
4.查询(select)数据
正如前面所说,提倡使用元组进行操作。
2 symbol = 'RHAT'
3 c.execute("SELECT * FROM stocks WHERE symbol = '%s'" % symbol)
4
5 # Do this instead
6 t = ('RHAT',)
7 c.execute('SELECT * FROM stocks WHERE symbol=?', t)
8 print c.fetchone()
5.删除(delete)数据
http://linux.ccidnet.com/art/302/20061117/953467_1.html
管道及有名管道
在本系列序中作者概述了 linux 进程间通信的几种主要手段。其中管道和有名管道是最早的进程间通信机制之一,管道可用于具有亲缘关系进程间的通信,有名管道克服了管道没有名字的限制,因此,除具有管道所具有的功能外,它还允许无亲缘关系进程间的通信。 认清管道和有名管道的读写规则是在程序中应用它们的关键,本文在详细讨论了管道和有名管道的通信机制的基础上,用实例对其读写规则进行了程序验证,这样做有利于增强读者对读写规则的感性认识,同时也提供了应用范例。
1、 管道概述及相关API应用
1.1 管道相关的关键概念
管道是Linux支持的最初Unix IPC形式之一,具有以下特点:
管道是半双工的,数据只能向一个方向流动;需要双方通信时,需要建立起两个管道;
只能用于父子进程或者兄弟进程之间(具有亲缘关系的进程);
单独构成一种独立的文件系统:管道对于管道两端的进程而言,就是一个文件,但它不是普通的文件,它不属于某种文件系统,而是自立门户,单独构成一种文件系统,并且只存在与内存中。
数据的读出和写入:一个进程向管道中写的内容被管道另一端的进程读出。写入的内容每次都添加在管道缓冲区的末尾,并且每次都是从缓冲区的头部读出数据。
1.2管道的创建:
#include int pipe(int fd[2])
该函数创建的管道的两端处于一个进程中间,在实际应用中没有太大意义,因此,一个进程在由pipe()创建管道后,一般再fork一个子进程,然后通过管道实现父子进程间的通信(因此也不难推出,只要两个进程中存在亲缘关系,这里的亲缘关系指的是具有共同的祖先,都可以采用管道方式来进行通信)。
1.3管道的读写规则:
管道两端可分别用描述字fd[0]以及fd[1]来描述,需要注意的是,管道的两端是固定了任务的。即一端只能用于读,由描述字fd[0]表示,称其为管道读端;另一端则只能用于写,由描述字fd[1]来表示,称其为管道写端。如果试图从管道写端读取数据,或者向管道读端写入数据都将导致错误发生。一般文件的I/O函数都可以用于管道,如close、read、write等等。
从管道中读取数据:
如果管道的写端不存在,则认为已经读到了数据的末尾,读函数返回的读出字节数为0;当管道的写端存在时,如果请求的字节数目大于PIPE_BUF,则返回管道中现有的数据字节数,如果请求的字节数目不大于PIPE_BUF,则返回管道中现有数据字节数(此时,管道中数据量小于请求的数据量);或者返回请求的字节数(此时,管道中数据量不小于请求的数据量)。注:(PIPE_BUF在include/linux/limits.h中定义,不同的内核版本可能会有所不同。Posix.1要求PIPE_BUF至少为512字节,red hat 7.2中为4096)。
关于管道的读规则验证:
* readtest.c * #include #include #include main() { int pipe_fd[2]; pid_t pid; char r_buf[100]; char w_buf[4]; char* p_wbuf; int r_num; int cmd; memset(r_buf,0,sizeof(r_buf)); memset(w_buf,0,sizeof(r_buf)); p_wbuf=w_buf; if(pipe(pipe_fd)<0) { printf("pipe create error\n"); return -1; } if((pid=fork())==0) { printf("\n"); close(pipe_fd[1]); sleep(3);//确保父进程关闭写端 r_num=read(pipe_fd[0],r_buf,100); printf( "read num is %d the data read from the pipe is %d\n",r_num,atoi(r_buf)); close(pipe_fd[0]); exit(); } else if(pid>0) { close(pipe_fd[0]);//read strcpy(w_buf,"111"); if(write(pipe_fd[1],w_buf,4)!=-1) printf("parent write over\n"); close(pipe_fd[1]);//write printf("parent close fd[1] over\n"); sleep(10); } }
程序输出结果:
* parent write over * parent close fd[1] over * read num is 4 the data read from the pipe is 111
附加结论:管道写端关闭后,写入的数据将一直存在,直到读出为止。
向管道中写入数据:
向管道中写入数据时,linux将不保证写入的原子性,管道缓冲区一有空闲区域,写进程就会试图向管道写入数据。如果读进程不读走管道缓冲区中的数据,那么写操作将一直阻塞。
注:只有在管道的读端存在时,向管道中写入数据才有意义。否则,向管道中写入数据的进程将收到内核传来的SIFPIPE信号,应用程序可以处理该信号,也可以忽略(默认动作则是应用程序终止)。对管道的写规则的验证1:写端对读端存在的依赖性
#include #include main() { int pipe_fd[2]; pid_t pid; char r_buf[4]; char* w_buf; int writenum; int cmd; memset(r_buf,0,sizeof(r_buf)); if(pipe(pipe_fd)<0) { printf("pipe create error\n"); return -1; } if((pid=fork())==0) { close(pipe_fd[0]); close(pipe_fd[1]); sleep(10); exit(); } else if(pid>0) { sleep(1); //等待子进程完成关闭读端的操作 close(pipe_fd[0]);//write w_buf="111"; if((writenum=write(pipe_fd[1],w_buf,4))==-1) printf("write to pipe error\n"); else printf("the bytes write to pipe is %d \n", writenum); close(pipe_fd[1]); } }
则输出结果为: Broken pipe,原因就是该管道以及它的所有fork()产物的读端都已经被关闭。如果在父进程中保留读端,即在写完pipe后,再关闭父进程的读端,也会正常写入pipe,读者可自己验证一下该结论。因此,在向管道写入数据时,至少应该存在某一个进程,其中管道读端没有被关闭,否则就会出现上述错误(管道断裂,进程收到了SIGPIPE信号,默认动作是进程终止)对管道的写规则的验证2:linux不保证写管道的原子性验证
#include #include #include main(int argc,char**argv) { int pipe_fd[2]; pid_t pid; char r_buf[4096]; char w_buf[4096*2]; int writenum; int rnum; memset(r_buf,0,sizeof(r_buf)); if(pipe(pipe_fd)<0) { printf("pipe create error\n"); return -1; } if((pid=fork())==0) { close(pipe_fd[1]); while(1) { sleep(1); rnum=read(pipe_fd[0],r_buf,1000); printf("child: readnum is %d\n",rnum); } close(pipe_fd[0]); exit(); } else if(pid>0) { close(pipe_fd[0]);//write memset(r_buf,0,sizeof(r_buf)); if((writenum=write(pipe_fd[1],w_buf,1024))==-1) printf("write to pipe error\n"); else printf("the bytes write to pipe is %d \n", writenum); writenum=write(pipe_fd[1],w_buf,4096); close(pipe_fd[1]); } }
输出结果:
the bytes write to pipe 1000 the bytes write to pipe 1000 //注意,此行输出说明了写入的非原子性 the bytes write to pipe 1000 the bytes write to pipe 1000 the bytes write to pipe 1000 the bytes write to pipe 120 //注意,此行输出说明了写入的非原子性 the bytes write to pipe 0 the bytes write to pipe 0 ......
结论:
写入数目小于4096时写入是非原子的!
如果把父进程中的两次写入字节数都改为5000,则很容易得