当前位置:  编程技术>移动开发
本页文章导读:
    ▪红别传感智能劝导系统        红外传感智能劝导系统一、项目简介:目前交通安全,文明出行是热点话题。交通方面的诸多设施都有待解决及改善,本项目以交通信号灯为研究背景,从行人的角度,节能安全为目的,来.........
    ▪ 树莓派IO统制        树莓派IO控制树莓派IO控制 本文博客链接:http://blog.csdn.net/jdh99,作者:jdh,转载请注明. 环境: 主机:WIN7 硬件:树莓派 说明: 参考链接:http://www.airspayce.com/mikem/bcm2835/index.html 树莓派提供.........
    ▪ S5PV210(TQ210)学习札记——LCD驱动编写       S5PV210(TQ210)学习笔记——LCD驱动编写网上S5PV210内核移植的文章不是很多,而描述2440和6410内核移植的文章多数是讲如何移植,而非手动编写,但是,韦东山老师的视频中讲述了如何从头编.........

[1]红别传感智能劝导系统
    来源: 互联网  发布时间: 2014-02-18
红外传感智能劝导系统
一、项目简介:目前交通安全,文明出行是热点话题。交通方面的诸多设施都有待解决及改善,本项目以交通信号灯为研究背景,从行人的角度,节能安全为目的,来设计一个交通信号灯控制系统。




二、系统主要模块及作用:红外检测模块,噪声检测模块,语音提示模块,上位机控制模块。
*多对红外传感器检测人流量的大小;


**对周围环境中的声音强度进行检测;


***语音提示行人不要闯红灯;


****上位机matlab串口通信设置手动和自动检测模式,及采集噪声数据,并储存,供以后分析。


三、问题解决及目标实现:
1.能够根据人是否闯红灯,控制闯红灯提示音播报【相比较没有语音提示,或一直语音提示,有着惊醒、节能两方面的优点


2.能够根据交通信号灯周围环境大小,来控制语音播报声音大小【优点在于节能及智能化】


3.上位机能够让交通管理员手动控制语音播报,并能够实现采集信号灯周围噪声环境数据,供相关人员分析以天为周期的交通信号灯环境下人员的心理变化,环境变化。


四、总体图
图片不好上传,略。








五、工程实现
项目的所有文件已上传至我的资源




六、问题及建议
1.工程
对于硬件开发,涉及到诸多模块,每个模块必须要写成.c,.h形式方便后续调用,及裁剪


2.全局变量
全局变量一般不建议使用,但对于控制系统,模块间的信号耦合是无法避免的,而且许多全局变量的值必须要在中断里改变
volatile 关键词可以避免编译器对全局变量的使用进行优化,防止全局变量的值在中断里成功修改,而在其他模块并没有改变。
在此次项目中遇到个问题:即使加了关键词volatile ,中断里还是无法修改全局变量的值,最终经过排查,发现是由于我在两处中断里将全局变量的值分别致0,1而这两个中断服务程序的执行并不一致。
还有建议将所有的全局变量单独弄个文件,进行调用






3.时钟
对于51单片机这个单一时钟,不存在这种问题,但是对于msp430或arm等多时钟的,时钟设置尤为重要,甚至可以说如果在项目开始初没有进行很好的预制,对后续的开发及调试有着致命的影响,而且有些时钟源可以提供不同的时钟,而在不同模块中使用同一时钟源的不同时钟,相互之间是会有影响的。比如串口通信,可能会造成接收字符的不完整性。




4.程序框图
对于小的c语言文件,不画程序框图,好像不影响什么,但是对于有着诸多文件的c工程。没有程序框图,会使得后续开发缺失宏观把握,对于mcu有限的资源,不能充分利用,导致需要外接模块。各模块之间、模块与主程序之间缺乏预定的逻辑连接。




5.资源利用
在画完程序框图后,应当接着将各个模块之间所需的构件列出,比如需要定时、计数器否?采用什么方式通信。
然后在实现相应代码文件中注释好占用的管脚,内部资源,等一系列与mcu内部有关的东西












    
[2] 树莓派IO统制
    来源: 互联网  发布时间: 2014-02-18
树莓派IO控制

树莓派IO控制


本文博客链接:http://blog.csdn.net/jdh99,作者:jdh,转载请注明.


环境:

主机:WIN7

硬件:树莓派


说明:

参考链接:http://www.airspayce.com/mikem/bcm2835/index.html

树莓派提供若干IO,本文对其进行控制.

进行控制的IO为P1端口的11脚.



下载库文件:bcm2835-1.25.tar

链接:http://www.airspayce.com/mikem/bcm2835/bcm2835-1.25.tar.gz

安装:

tar zxvf bcm2835-1.25.tar
cd bcm2835-1.25
./configure
make
sudo make check
sudo make install


源代码:

#include <bcm2835.h> 

#define PIN RPI_GPIO_P1_11

int main(int argc,char **argv)
{
	if (!bcm2835_init())
	{
		return 1;
	}

	bcm2835_gpio_fsel(PIN,BCM2835_GPIO_FSEL_OUTP);
	
	while (1)
	{
		bcm2835_gpio_write(PIN,HIGH);
		bcm2835_delay(500);
		bcm2835_gpio_write(PIN,LOW);
		bcm2835_delay(500);
	}

	bcm2835_close();
	return 0;
}

编译:

gcc -o Test_Led bTest_Led.c -l bcm2835
sudo ./Test_Led

运行:






    
[3] S5PV210(TQ210)学习札记——LCD驱动编写
    来源: 互联网  发布时间: 2014-02-18
S5PV210(TQ210)学习笔记——LCD驱动编写
网上S5PV210内核移植的文章不是很多,而描述2440和6410内核移植的文章多数是讲如何移植,而非手动编写,但是,韦东山老师的视频中讲述了如何从头编写LCD驱动,当然是以2440为例的,我看过视频之后在TQ210平台上进行了实验,实验成功,详细的原理部分以我现在的水平还难以表达清楚。下载是我自己写的代码,适用于TQ210的7寸电容屏。
#include <linux/module.h>
#include <linux/fb.h>
#include <linux/dma-mapping.h>
#include <linux/clk.h>


static struct fb_info *lcd_info;
unsigned long pseudo_palette[16];

unsigned long *display_control;

volatile unsigned long* gpf0con;
volatile unsigned long* gpf1con;
volatile unsigned long* gpf2con;
volatile unsigned long* gpf3con;
volatile unsigned long* gpd0con;
volatile unsigned long* gpd0dat;
volatile unsigned long* vidcon0;
volatile unsigned long* vidcon1;
volatile unsigned long* vidtcon0;
volatile unsigned long* vidtcon1;
volatile unsigned long* vidtcon2;
volatile unsigned long* wincon0;
volatile unsigned long* vidosd0a;
volatile unsigned long* vidosd0b;
volatile unsigned long* vidosd0c;
volatile unsigned long* vidw00add0b0;
volatile unsigned long* vidw00add1b0;
volatile unsigned long* shodowcon;

struct clk *lcd_clk;


static inline unsigned int chan_to_field(unsigned int chan, struct fb_bitfield *bf)
{
	chan &= 0xffff;
	chan >>= 16 - bf->length;
	return chan << bf->offset;
}

static int lcdfb_setcolreg(unsigned int regno, unsigned int red,
			     unsigned int green, unsigned int blue,
			     unsigned int transp, struct fb_info *info)
{
	unsigned int val;
	
	if (regno > 16)
		return 1;

	/* 用red,green,blue三原色构造出val */
	val  = chan_to_field(red,	&info->var.red);
	val |= chan_to_field(green, &info->var.green);
	val |= chan_to_field(blue,	&info->var.blue);
	
	//((u32 *)(info->pseudo_palette))[regno] = val;
	pseudo_palette[regno] = val;
	return 0;
}

static struct fb_ops lcd_fbops = {
	.owner		= THIS_MODULE,
	.fb_setcolreg	= lcdfb_setcolreg,
	.fb_fillrect	= cfb_fillrect,
	.fb_copyarea	= cfb_copyarea,
	.fb_imageblit	= cfb_imageblit,
};

static int lcd_init(void){
	int ret;

	/*分配fb_info */
	lcd_info = framebuffer_alloc(0, NULL);
	if(lcd_info == NULL){
		printk(KERN_ERR "alloc framebuffer failed!\n");
		return -ENOMEM;
	}

	/* 配置fb_info各成员*/
	/* fix */
	strcpy(lcd_info->fix.id, "s5pv210_lcd");
	lcd_info->fix.smem_len = 800*480*4;
	lcd_info->fix.type = FB_TYPE_PACKED_PIXELS;
	lcd_info->fix.visual = FB_VISUAL_TRUECOLOR;
	lcd_info->fix.line_length = 800*4;

	/* var */
	lcd_info->var.xres = 800;
	lcd_info->var.yres = 480;
	lcd_info->var.xres_virtual = 800;
	lcd_info->var.yres_virtual = 480;
	lcd_info->var.bits_per_pixel = 32;

	lcd_info->var.red.offset = 16;
	lcd_info->var.red.length = 8;
	lcd_info->var.green.offset = 8;
	lcd_info->var.green.length = 8;
	lcd_info->var.blue.offset = 0;
	lcd_info->var.blue.length = 8;
	lcd_info->var.activate = FB_ACTIVATE_NOW;

	lcd_info->screen_size = 800*480*4;
	lcd_info->pseudo_palette = pseudo_palette;

	lcd_info->fbops = &lcd_fbops;
	/* 配置硬件资源*/
	/* 映射内存*/
	display_control = ioremap(0xe0107008,4);
	gpf0con      = ioremap(0xE0200120, 4);
	gpf1con      = ioremap(0xE0200140, 4);
	gpf2con      = ioremap(0xE0200160, 4);
	gpf3con      = ioremap(0xE0200180, 4);
	
	gpd0con      = ioremap(0xE02000A0, 4);
	gpd0dat      = ioremap(0xE02000A4, 4);
	
	vidcon0      = ioremap(0xF8000000, 4);
	vidcon1      = ioremap(0xF8000004, 4);
	vidtcon0     = ioremap(0xF8000010, 4);
	vidtcon1     = ioremap(0xF8000014, 4);
	vidtcon2     = ioremap(0xF8000018, 4);
	wincon0      = ioremap(0xF8000020, 4);
	vidosd0a     = ioremap(0xF8000040, 4);
	vidosd0b     = ioremap(0xF8000044, 4);
	vidosd0c     = ioremap(0xF8000048, 4);
	vidw00add0b0 = ioremap(0xF80000A0, 4);
	vidw00add1b0 = ioremap(0xF80000D0, 4);
	shodowcon    = ioremap(0xF8000034, 4);
	
	/* 配置GPIO*/
	*gpf0con = 0x22222222;
	*gpf1con = 0x22222222;
	*gpf2con = 0x22222222;
	*gpf3con = 0x22222222;
	*gpd0con &= ~0xf;
	*gpd0con |= 0x1;
	*gpd0dat |= 1<<0;
	*display_control = 2<<0;
	/* 使能时钟*/
	lcd_clk = clk_get(NULL, "lcd");
	if (!lcd_clk || IS_ERR(lcd_clk)) {
		printk(KERN_INFO "failed to get lcd clock source\n");
	}
	clk_enable(lcd_clk);
	
	/* 配置LCD控制器*/
	*vidcon0 = (4<<6)|(1<<4);
	*vidcon1 = (1<<6)|(1<<5)|(1<<4);

	*vidtcon0 = (17<<16)|(26<<8)|(4<<0);
	*vidtcon1 = (40<<16)|(214<<8)|(4<<0);
	*vidtcon2 = (479<<11)|(799<<0);

	*wincon0 &= ~(0xf<<2);
	*wincon0 |= (0xb<<2);

	*vidosd0a = (0<<11)|(0<<0);
	*vidosd0b = (799<<11)|(479<<0);
	*vidosd0c = 480*800;
	//物理地址
	lcd_info->screen_base = dma_alloc_writecombine(NULL, 
		lcd_info->fix.smem_len, (dma_addr_t *)&(lcd_info->fix.smem_start), GFP_KERNEL);
	
	*vidw00add0b0 = lcd_info->fix.smem_start;
	*vidw00add1b0 = lcd_info->fix.smem_start + lcd_info->fix.smem_len;

	*shodowcon = 0x1;

	//开启状态
	*wincon0 |= 1;
	*vidcon0 |= 3;
	/* 注册fb_info */
	ret = register_framebuffer(lcd_info);
	return ret;
}

static void lcd_exit(void){
	unregister_framebuffer(lcd_info);
	dma_free_writecombine(NULL, lcd_info->fix.smem_len, 
		(void*)lcd_info->screen_base, (dma_addr_t)lcd_info->fix.smem_start);

	iounmap(shodowcon);
	iounmap(vidw00add1b0);
	iounmap(vidw00add0b0);
	iounmap(vidosd0c);
	iounmap(vidosd0b);
	iounmap(vidosd0a);
	iounmap(wincon0);
	iounmap(vidtcon2);
	iounmap(vidtcon1);
	iounmap(vidtcon0);
	iounmap(vidcon1);
	iounmap(vidcon0);
	iounmap(gpd0dat);
	iounmap(gpd0con);
	iounmap(gpf3con);
	iounmap(gpf2con);
	iounmap(gpf1con);
	iounmap(gpf0con);
	framebuffer_release(lcd_info);
}

module_init(lcd_init);
module_exit(lcd_exit);
MODULE_LICENSE("GPL");

将上面的代码在自己的内核环境下编译,然后下载到开发板上试运行即可。

在安装驱动程序前执行指令:

ls /dev/fb*
如果有fb0或者其他fb*存在,应该修改内和配置,取消其他fb的配置,如果看不到fb*设备,则可以按照如下步骤进行测试。
测试前还需要修改下内核配置,有两个原因:

(1) 内核默认配置下不支持Frame buffer

(2) 我们的驱动程序中用到了三个函数:

	.fb_fillrect	= cfb_fillrect,
	.fb_copyarea	= cfb_copyarea,
	.fb_imageblit	= cfb_imageblit,
这三个函数是引用的内核中的函数,不是我们自行实现的。

鉴于上面两个原因,我们需要配置内核支持Frame buffer和列举出的三个函数,另外,内核中并没有直接配置支持这三个函数的选项,权宜之计,修改下drivers/video目录下的Kconfig文件,在config FB项中添加

select FB_CFB_FILLRECT
select FB_CFB_COPYAREA
select FB_CFB_IMAGEBLIT
添加时一定保证格式正确,参考下该文件下的其他配置项即可。配置完成后执行make menuconfig作如下配置:
Device Drivers  --->
	Graphics support  --->
		<*> Support for frame buffer devices  --->
配置后保存配置,编译内核并将编译好的内核下载到开发板或者NFS运行,同时将编译好的LCD驱动程序拷贝到开发板运行环境中进行安装,如果驱动文件名为lcd.ko,则执行:
insmod lcd.ko
这时,你可以看到屏幕被重新初始化了。虽然LCD已经初始化了,但是不知道如何进行测试,可以按照韦东山老师视频中讲述的方法进行LCD驱动测试,但是我们移植的3.8.3内核默认不支持字库,还需要作其他配置,我是用画线的方式测试的屏幕,这里我讲一下我用的测试方法:

(1) 在Linux主机上编译下面的C++程序

#include <iostream>

unsigned long buffer[480][800] = {0};

void put_long_hex(unsigned long v){ 
    for(int i = 0; i != 4; ++i){
        std::cout.put(static_cast<char>(0xff&(v>>(8*(3-i)))));
    }   
}

int main(){
    for(int i = 0; i != 480; ++i){
        buffer[i][0]   = 0x00ff0000;
        buffer[i][799] = 0x0000ff00;
    }   

    for(int i = 0; i != 800; ++i){
        buffer[0][i]   = 0xff000000;
        buffer[479][i] = 0x00ffff00;
    }   

    for(int i = 0; i != 480; ++i){
        for(int j = 0; j != 800; ++j){
            put_long_hex(buffer[i][j]); 
        }   
    }   
}
编译指令如下:
g++ -o main main.cpp
然后如下方式执行程序:
./main > /nfsroot/rootfs/test.img
我是直接将文件生成在NFS的根文件系统下了,你也可以用其他方式将生成的文件拷贝到开发板运行环境内,然后执行如下指令:
cat test.img > /dev/fb0
这时,就可以在屏幕上看到一个矩形且矩形的四条边颜色不相同。

如果想将驱动编译进内核,并在启动时可以看到小企鹅,可以将上面的驱动拷贝到内核的drivers/video/目录下,命名为tq210_fb.c,然后在该目录下做如下修改:

(1)修改Kconfig,添加TQ210的LCD驱动配置选项

在config FB_S4C项的后面添加如下内容:

config FB_TQ210
    tristate "TQ210 lcd support"
    depends on FB
    select FB_CFB_FILLRECT
    select FB_CFB_COPYAREA
    select FB_CFB_IMAGEBLIT
    ---help---
    Currently the suport is only for the TQ210
(2)修改Makefile,添加如下内容:
obj-$(CONFIG_FB_TQ210)        += tq210_fb.o

(3)退回到内核根目录下,执行make menuconfig并按如下方式配置内核

Device Drivers  --->
	Graphics support  --->
		<*> Support for frame buffer devices  --->
			<*>   TQ210 lcd support
		[*] Bootup logo  --->
			[*]   Standard black and white Linux logo 
			[*]   Standard 16-color Linux logo
			[*]   Standard 224-color Linux logo



然后执行指令make zImage或者make uImage来编译内核,将编译好的内核烧写到开发板或者是放到NFS下即可正常运行。

如果您在开发或配置过程遇到什么问题可以留言讨论。


    
最新技术文章:
▪Android开发之登录验证实例教程
▪Android开发之注册登录方法示例
▪Android获取手机SIM卡运营商信息的方法
▪Android实现将已发送的短信写入短信数据库的...
▪Android发送短信功能代码
▪Android根据电话号码获得联系人头像实例代码
▪Android中GPS定位的用法实例
▪Android实现退出时关闭所有Activity的方法
▪Android实现文件的分割和组装
▪Android录音应用实例教程
▪Android双击返回键退出程序的实现方法
▪Android实现侦听电池状态显示、电量及充电动...
▪Android获取当前已连接的wifi信号强度的方法
▪Android实现动态显示或隐藏密码输入框的内容
▪根据USER-AGENT判断手机类型并跳转到相应的app...
▪Android Touch事件分发过程详解
▪Android中实现为TextView添加多个可点击的文本
▪Android程序设计之AIDL实例详解
▪Android显式启动与隐式启动Activity的区别介绍
▪Android按钮单击事件的四种常用写法总结
▪Android消息处理机制Looper和Handler详解
▪Android实现Back功能代码片段总结
▪Android实用的代码片段 常用代码总结
▪Android实现弹出键盘的方法
▪Android中通过view方式获取当前Activity的屏幕截...
▪Android提高之自定义Menu(TabMenu)实现方法
▪Android提高之多方向抽屉实现方法
▪Android提高之MediaPlayer播放网络音频的实现方法...
▪Android提高之MediaPlayer播放网络视频的实现方法...
▪Android提高之手游转电视游戏的模拟操控
 


站内导航:


特别声明:169IT网站部分信息来自互联网,如果侵犯您的权利,请及时告知,本站将立即删除!

©2012-2021,,E-mail:www_#163.com(请将#改为@)

浙ICP备11055608号-3