Java 不同进制数转换
import java.io.ByteArrayInputStream; import java.io.ByteArrayOutputStream; import java.io.IOException; import java.io.ObjectInputStream; import java.io.ObjectOutputStream; import java.io.Serializable; import java.security.MessageDigest; import java.security.NoSuchAlgorithmException; public final class Converts { public final static char[] BToA = "0123456789abcdef".toCharArray() ; private Converts() { } /** * 把16进制字符串转换成字节数组 * @param hex * @return */ public static byte[] hexStringToByte(String hex) { int len = (hex.length() / 2); byte[] result = new byte[len]; char[] achar = hex.toCharArray(); for (int i = 0; i < len; i++) { int pos = i * 2; result[i] = (byte) (toByte(achar[pos]) << 4 | toByte(achar[pos + 1])); } return result; } private static byte toByte(char c) { byte b = (byte) "0123456789ABCDEF".indexOf(c); return b; } /** * 把字节数组转换成16进制字符串 * @param bArray * @return */ public static final String bytesToHexString(byte[] bArray) { StringBuffer sb = new StringBuffer(bArray.length); String sTemp; for (int i = 0; i < bArray.length; i++) { sTemp = Integer.toHexString(0xFF & bArray[i]); if (sTemp.length() < 2) sb.append(0); sb.append(sTemp.toUpperCase()); } return sb.toString(); } /** * 把字节数组转换为对象 * @param bytes * @return * @throws IOException * @throws ClassNotFoundException */ public static final Object bytesToObject(byte[] bytes) throws IOException, ClassNotFoundException { ByteArrayInputStream in = new ByteArrayInputStream(bytes); ObjectInputStream oi = new ObjectInputStream(in); Object o = oi.readObject(); oi.close(); return o; } /** * 把可序列化对象转换成字节数组 * @param s * @return * @throws IOException */ public static final byte[] objectToBytes(Serializable s) throws IOException { ByteArrayOutputStream out = new ByteArrayOutputStream(); ObjectOutputStream ot = new ObjectOutputStream(out); ot.writeObject(s); ot.flush(); ot.close(); return out.toByteArray(); } public static final String objectToHexString(Serializable s) throws IOException{ return bytesToHexString(objectToBytes(s)); } public static final Object hexStringToObject(String hex) throws IOException, ClassNotFoundException{ return bytesToObject(hexStringToByte(hex)); } /** * @函数功能: BCD码转为10进制串(阿拉伯数据) * @输入参数: BCD码 * @输出结果: 10进制串 */ public static String bcd2Str(byte[] bytes){ StringBuffer temp=new StringBuffer(bytes.length*2); for(int i=0;i>>4)); temp.append((byte)(bytes[i]& 0x0f)); } return temp.toString().substring(0,1).equalsIgnoreCase("0")?temp.toString().substring(1):temp.toString(); } /** * @函数功能: 10进制串转为BCD码 * @输入参数: 10进制串 * @输出结果: BCD码 */ public static byte[] str2Bcd(String asc) { int len = asc.length(); int mod = len % 2; if (mod != 0) { asc = "0" + asc; len = asc.length(); } byte abt[] = new byte[len]; if (len >= 2) { len = len / 2; } byte bbt[] = new byte[len]; abt = asc.getBytes(); int j, k; for (int p = 0; p < asc.length()/2; p++) { if ( (abt[2 * p] >= '0') && (abt[2 * p] <= '9')) { j = abt[2 * p] - '0'; } else if ( (abt[2 * p] >= 'a') && (abt[2 * p] <= 'z')) { j = abt[2 * p] - 'a' + 0x0a; } else { j = abt[2 * p] - 'A' + 0x0a; } if ( (abt[2 * p + 1] >= '0') && (abt[2 * p + 1] <= '9')) { k = abt[2 * p + 1] - '0'; } else if ( (abt[2 * p + 1] >= 'a') && (abt[2 * p + 1] <= 'z')) { k = abt[2 * p + 1] - 'a' + 0x0a; }else { k = abt[2 * p + 1] - 'A' + 0x0a; } int a = (j << 4) + k; byte b = (byte) a; bbt[p] = b; } return bbt; } public static String BCD2ASC(byte[] bytes) { StringBuffer temp = new StringBuffer(bytes.length * 2); for (int i = 0; i < bytes.length; i++) { int h = ((bytes[i] & 0xf0) >>> 4); int l = (bytes[i] & 0x0f); temp.append(BToA[h]).append( BToA[l]); } return temp.toString() ; } /** * MD5加密字符串,返回加密后的16进制字符串 * @param origin * @return */ public static String MD5EncodeToHex(String origin) { return bytesToHexString(MD5Encode(origin)); } /** * MD5加密字符串,返回加密后的字节数组 * @param origin * @return */ public static byte[] MD5Encode(String origin){ return MD5Encode(origin.getBytes()); } /** * MD5加密字节数组,返回加密后的字节数组 * @param bytes * @return */ public static byte[] MD5Encode(byte[] bytes){ MessageDigest md=null; try { md = MessageDigest.getInstance("MD5"); return md.digest(bytes); } catch (NoSuchAlgorithmException e) { e.printStackTrace(); return new byte[0]; } } }
oauth-signpost
http://code.google.com/p/oauth-signpost/
新浪api
http://open.weibo.com/development
回调要与客户端填写一致,就这么简单
android service之打不死的小强
http://www.eoeandroid.com/thread-8195-1-1.html
MTK 手机用的操作系统是 nucleus, 这是一个rtfs(实时操作系统),这个rtfs本身是不带内存管理功能,所以MTK自己写的内存管理。
(nucleus在系统初始化完毕时,会调用Application_Initialize,参数就是可使用内存的起始地址)
大体上来分,MTK内存可以分为3种:
control buffer
平常使用的OslMalloc就是这个内存。
这个内存内部实现是按块来划分的(pool),具体的配置可以custom_config.c 文件里的custom_config_ctrl_buff_info()里看到
里面的size 指定了这个块的大小,no_of_buff 指定了有多少个这样的块。
按块来管理内存,可以有效地控制内存的碎片,管理也相对简单,可能会造成内存的一些浪费
对于手机这种需要长时间运行不重起的设备来说,还是很有必要的。
MTK 默认最大块的大小为 2048byte,也就是2k。这就是说用OslMalloc 分配内存默认最大能分配到2k,
这个可以看custom_config_ctrl_buff_info()配置可以看到。
可以通过修改里面的配置来改变这个值,不过一般不这么做,因为MTK提供了其他的内存管理方式
#define OslMalloc(nob) get_ctrl_buffer(nob)
#define OslMfree(frp) free_ctrl_buffer(frp)
少于2K 使用get_ctrl_buffer。
大于2K 使用adm
system buffer
system buffer 平时我们用不到,听名字也是系统使用的。
主要是提供 run-time usage,是一块 semi-static memory(什么意思?)
比如 block of task, task stack ,control block of control buffer ,buffer pool等等
在 custom_config.c里面配置 ,主要有两个宏 GLOBAL_MEM_SIZE 和 GLOBAL_DEBUG_MEM_SIZE
两个 static 数组 static kal_uint32 System_Mem_Pool[GLOBAL_MEM_SIZE/sizeof(kal_uint32)];
和 static kal_uint32 Debug_Mem_Pool[GLOBAL_DEBUG_MEM_SIZE/sizeof(kal_uint32)];
为了满足时间要求,也就是要求快速分配,系统内存又分为 internal system memory 和 system memory
前者link 到 internal SRAM ,后者link 到 external SRAM
app buffer
app的内存是使用通过MTK 提供的一种ADM(application dynamic memory)机制来实现,ADM 主要的功能是通过管理一个数组来实现内存的分配。
ADM 也是通过内存块(pool)来实现的,具体无法看到其代码。app通过这个adm这个机制,可以更加灵活的使用内存,比如分配大内存(大于2k)等等
主要函数
创建 adm
KAL_ADM_ID kal_adm_create(void *mem_addr, kal_uint32 size, kal_uint32 *subpool_size, kal_bool islogging);
删除函数
kal_status kal_adm_delete(KAL_ADM_ID adm_id);
分配函数
extern void *kal_adm_internal_alloc(KAL_ADM_ID adm_id, kal_uint32 size, char *filename, kal_uint32 line);
#define kal_adm_alloc(adm_id, size) kal_adm_internal_alloc(adm_id, size, __FILE__, __LINE__)
释放函数
extern void kal_adm_free(KAL_ADM_ID adm_id, void *mem_addr);
在 MTK 内存管理简单总结 中,大体说了MTK的三种内存分配方式,对于第三种,也就是app buffer,是比较丰富的一种。
在 MTK 平台中也有许多具体的实现。在代码里搜索一下 kal_adm_create 就可以发现有许多地方使用了。
看一个比较典型的使用:
在文件app_mem.c里,有两个memory pool,一个是用于应用之间共享内存,另一个是用于屏幕内存。
第一种内存,主要是用于各种应用之间共享内存(以下简称ASM),这样可以节省内存,MTK实现了一种机制,可以在多个应用之间共享内存
当当前应用想获得的共享内存不足时,MTK会通知后台应用释放相应的内存。这套机制在AppMemMgr.c里面实现。
先看一下初始化该内存次池函数
void applib_mem_ap_init(void (*stop_finish_callback_by_MMI)(kal_uint32 app_id, kal_uint32 string_id, kal_bool result))
这个函数带有一个参数,这个参数是一个函数指针,该回调函数有3个参数,app_id,(应用id),string_id 和 result。
这个回调函数比较特别,是当一个后台应用 被 要求释放内存,释放完毕后调用的。
为什么要搞这么一个函数,因为一些应用比较复杂,释放内存的同时需要关闭一些资源,而这些动作是异步的,
等这些异步发的操作多完成时,调用一些函数,告诉ASM,内存释放完毕。
具体实现:通过 调用 kal_adm_create 来创建一个内存池,然后保存了一些回调函数,没有什么特别的地方,
内存池的大小 是 APPLIB_MEM_AP_POOL_SIZE 来确定的,可以通过修改 app_asm_pool_union 来修改内存池的大小。
应用分配内存
void *applib_mem_ap_alloc(kal_uint32 app_id, kal_uint32 mem_size)
应用通过上面的函数来获得ASM的内存,参数一 app_id,是当前分配内存的id,这个id需要自己定义,并且注册(下文说明),
参数二是实际需要分配的内存大小。
具体实现:先mem_size 进行了处理,让其四字节对齐。然后通过 kal_adm_alloc 获得内存,不过这个内存加上了一个头结构和尾结构,
(头和尾都加入了特殊字符,再释放时进行检查,这个可以判断内存是否越界)。然后把这个内存插入到list的头部。
昨天说到了内存的分配。下面看一下内存释放
主要进行了3步:
static void applib_mem_ap_free_int(void *mem_ptr)
{
/*----------------------------*/
/* Local Variables */
/*----------------------------*/
applib_mem_header_struct *header, *prev_node, *remove_node;
applib_mem_footer_struct *footer;
/*----------------------------*/
/* Code Body */
/*----------------------------*/
if (g_applib_mem_cntx.app_pool_id) /* Normal mode */
{
ASSERT(mem_ptr && APPLIB_MEM_ALIGNED_4(mem_ptr));
header = ((applib_mem_header_struct*) mem_ptr) - 1;
footer = (applib_mem_footer_struct*) (((char*)mem_ptr) + header->chunk_size);
ASSERT(APPLIB_MEM_COMP_PATTERN(header->guard_pattern, APPLIB_MEM_HEADER_PATTERN1) &&
APPLIB_MEM_COMP_PATTERN(footer->guard_pattern, APPLIB_MEM_FOOTER_PATTERN1));
/*
* Remove the block from linked list
*
* It is not a fast algorithm, we can improve it by using double linked list,
* but we choose simpler design because
* 1. Typically total allocation count is small
* 2. We don't want to increase space overheads
* 3. We don't want to access KAL ADM internal data structure
*/
prev_node = &g_applib_mem_cntx.app_head;
ASSERT(prev_node->next);
for (remove_node = prev_node->next;
remove_node;
prev_node = remove_node, remove_node = prev_node->next)
{
if (remove_node == header)
{
break;
}
}
ASSERT(remove_node);
prev_node->next = remove_node->next;
/* Set guard pattern */
APPLIB_MEM_SET_PATTERN(header->guard_pattern, APPLIB_MEM_HEADER_PATTERN2);
APPLIB_MEM_SET_PATTERN(footer->guard_pattern, APPLIB_MEM_FOOTER_PATTERN2);
/* Release the block */
#ifdef APPLIB_MEM_USE_ADM
kal_adm_free(g_applib_mem_cntx.app_pool_id, header);
#else
free(header);
#endif
ASSERT(g_applib_mem_cntx.app_alloc_count > 0);
g_applib_mem_cntx.app_alloc_count--;
}
else /* Full pool mode */
{
ASSERT(mem_ptr == g_applib_mem_ap_pool && g_applib_mem_cntx.app_alloc_count == 1);
g_applib_mem_cntx.app_alloc_count = 0;
g_applib_mem_cntx.app_id_of_full_pool = APPLIB_MEM_AP_ID_DUMMY; /* 0 */
#ifdef APPLIB_MEM_USE_ADM
g_applib_mem_cntx.app_pool_id = kal_adm_create(
g_applib_mem_ap_pool,
APPLIB_MEM_AP_POOL_SIZE,
(kal_uint32*) g_applib_mem_pool_chunk_size,
KAL_FALSE);
#else /* APPLIB_MEM_USE_ADM */
g_applib_mem_cntx.app_pool_id = APPLIB_DUMMY_POOL_ID;
#endif /* APPLIB_MEM_USE_ADM */
}
}
取得内存的头部和尾部,(调试版本可以判断内存是否越界)
从链表中删除这个节点
调用 kal_adm_free 释放内存
在MTK 内存管理简单总结 2 提到调用 applib_mem_ap_alloc 分配内存是需要一个应用id,这个id是需要自己增加,
而且在调用这个函数之前必须 调用 applib_mem_ap_register 注册这个id。需要注意的是最后一个参数,是一个回调函数,
这个回调函数是在共享内存不够使用时,ASM会调用这个函数,告诉应用需要释放共享内存,供其它应用使用。
增加 id 在 app_mem.h 的 applib_mem_ap_id_enum 里面,只要添加一个id就可以。
同样 屏幕内存也是通过ADM来管理,屏幕内存 是用来 创建 layer 用的,在MTK的某个版本开始,创建layer的内存是有要求的,
需要applib_mem_screen_alloc 分配的内存。
void *Malloc(uint32 dwSize)
{
#ifdef WIN32
return (void *)malloc(dwSize);
#else
return (void *)med_alloc_ext_mem(dwSize);
#endif
}
如何在MTK上分配一块较大的内存?
本文来自:我爱研发网(52RD.com) - R&D大本营
详细出处:http://www.52rd.com/bbs/Archive_Thread.asp?SID=89009&TID=2
如过分配比较大内存,慎用 OslMalloc 其对应内存池比较小,并且对单次分配内存大小有限制
建议用 med_alloc_ext_mem
其对应内存池大小 #define MED_EXT_MEM_SIZE (sizeof(med_ext_mem_union))
如果需要还可以增大
MTK是如何申请内存空间的???
本文来自:我爱研发网(52RD.com) - R&D大本营
详细出处:http://www.52rd.com/bbs/Archive_Thread.asp?SID=187949&TID=3
1 oslmalloc
用于control buffer申请,size有限制,一般使用于较小buffer(通常0 - 2k)的申请。
2 app_malloc
ASM机制。用于应用共享内存的申请,需要注册ID,如有内存冲突,系统会提示停掉正在使用的APP,供用户选择停止。
3 scr_malloc
用于屏幕buffer申请,模板内部使用。
4 med_ext_malloc
用于申请较大块内存(2k - ?),从MED pool中。申请释放都比较简单,不用注册ID,但是注意free函数参数,需要对应2级指针。
med_free_ext_mem( (void **) &tempBuf );
MTK内存动态申请释放
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/feelinghappy/archive/2010/02/22/5317615.aspx
1. OslMalloc OslMfree
为一个般的程序分配内存,用来保存一般性的数据,效率高,不能分配太大内存,else程序会挂掉
2. media_get_ext_buffer media_free_ext_buffer
可以分配较大内存,与OslMalloc 有着数量级区别,比如读一个比较大的文件操作时,要分配的buffer就要这个 ,这个不是在堆上分配的,和寄存器有关系
3. gui_malloc gui_free
一般是用来合并图层,保存图层,MTK默认只分配了一个图层的空间,如果你用到了多层的话,就得另外分配内存了,就用这个
1. OslMalloc OslMfree
这两个函数就是直接define 的 ctrl buffer的函数 作用分配内存和malloc free功能类似
实际上是用一块内存池中分配和释放内存,具体实现是在ctrl_buff_pool.c里面做的
2. media_get_ext_buffer media_free_ext_buffer
因为task之间的函数不便互相调用,MDI等task在分配内存的时候会使用这对函数,实际实现时通过给MOD_SAP发送request buffer消息来获取内存
3. gui_malloc gui_free
这对函数和第一对函数的实现时完全一样的 只是提供给不同的module使用而已
还有,我在网上看到一个名词“Ctrl Buffer机制”,这个到底是什么东东?
Ctrl buffer机制实际上就是MTK内部的内存池管理机制的一种,对上面的感觉和malloc free一样,但是内存的数量是固定的,比如1024的buffer一般来说只有2个或者4个 低端版本甚至只有一个
本文来自CSDN博客,转载请标明出处:http://blog.csdn.net/manlt/archive/2010/09/30/5916738.aspx
============================================================================
MTK 内存管理简单总结
http://blog.csdn.net/yanwuxufeng/archive/2010/07/12/5730092.aspx
MTK 内存管理简单总结 2
http://blog.csdn.net/yanwuxufeng/archive/2010/07/13/5733138.aspx
MTK 内存管理简单总结 3
http://blog.csdn.net/yanwuxufeng/archive/2010/07/14/5735911.aspx
MTK 内存管理简单总结 4
http://blog.csdn.net/yanwuxufeng/archive/2010/07/16/5740999.aspx
MTK 内存管理简单总结 5
http://blog.csdn.net/yanwuxufeng/archive/2010/07/17/5743273.aspx