OpenGL ES Tutorial for Android – Part II – Building a polygon
December 4th, 2009 by Per-Erik Bergman — Android, Embedded
Previous tutorial was all about setting up the GLSurfaceView. Be sure to read it beacuse it's a really importent one to be able to continue.
Building a polygon
In this tutorial we will render our first polygon.
本教程中,将展现我们的第一个多边形
3D models are built up with smaller elements (vertices, edges, faces, and polygons) which can be manipulated individually.
3D模型是由一组可独立操纵的更小元素(点,线,面及多边形)组成。
Vertex
A vertex (vertices in plural) is the smallest building block of 3D model. A vertex is a point where two or more edges meet. In a 3D model a vertex can be shared between all connected edges, paces and polygons. A vertex can also be a represent for the position of a camera or a light source. You can see a vertex in the image below marked in yellow.
两条或多条边相交的点即称之为顶点,它是组成3D模型的最小元素。在3D模型中顶点可以被连接的边,面或多边形所共用,当然了,顶点也可以代表光源或是照相机。下图标注的黄色点即为顶点。
To define the vertices on android we define them as a float array that we put into a byte buffer to gain better performance. Look at the image to the right and the code below to match the vertices marked on the image to the code.
在android上,使用一个浮点数组来定义顶点,为提高性能,将它放入一个字节缓冲中(java5新特性,NIO)。右图中标记了四个顶点,下面的代码是对它们的定义。
private float vertices[] = {
-1.0f, 1.0f, 0.0f, // 0, Top Left
-1.0f, -1.0f, 0.0f, // 1, Bottom Left
1.0f, -1.0f, 0.0f, // 2, Bottom Right
1.0f, 1.0f, 0.0f, // 3, Top Right
};
// a float is 4 bytes, therefore we multiply the number if vertices with 4.一个浮点占用4个字节,所以字节缓冲的大小为x4(字节)
ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length * 4);
vbb.order(ByteOrder.nativeOrder());
FloatBuffer vertexBuffer = vbb.asFloatBuffer();
vertexBuffer.put(vertices);
vertexBuffer.position(0);
Don't forget that a float is 4 bytes and to multiply it with the number of vertices to get the right size on the allocated buffer.
OpenGL ES have a pipeline with functions to apply when you tell it to render. Most of these functions are not enabled by default so you have to remember to turn the ones you like to use on. You might also need to tell these functions what to work with. So in the case of our vertices we need to tell OpenGL ES that it’s okay to work with the vertex buffer we created we also need to tell where it is.
OpenGL Es管道可以理解为拥有一组开关控制功能的函数,而且许多控制函数默认是不开启的,如果你需要某项功能,请记得先告诉先打开这些功能。在某些情况下,你可能还需要指出这些函数的用途。以上面定义的顶点为例,我们需要告诉OpenGL ES启用顶点缓冲,并且设置顶点缓冲。
// Enabled the vertex buffer for writing and to be used during rendering.启用顶点缓冲
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);// OpenGL docs.
// Specifies the location and data format of an array of vertex
// coordinates to use when rendering.指定顶点位置
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, vertexBuffer); // OpenGL docs.
When you are done with the buffer don't forget to disable it.
最后,别忘了关闭顶点缓冲(在画完以后)
// Disable the vertices buffer.
gl.glDisableClientState(GL10.GL_VERTEX_ARRAY);// OpenGL docs.
Edge
Edge is a line between two vertices. They are border lines of faces and polygons. In a 3D model an edge can be shared between two adjacent faces or polygons. Transforming an edge affects all connected vertices, faces and polygons. In OpenGL ES you don't define the edges, you rather define the face by giving them the vertices that would build up the three edges. If you would like modify an edge you change the two vertices that makes the edge. You can see an edge in the image below marked in yellow.
边(也称线)是两个顶点之间的连线,多边形的边框也是边(边框边框,框住面的边)。在3D模型中,边可以被连接的面所共用。移动一条边,将影响到其所连接的所有点和面,在OpenGL ES中,你不必定义边,需要定义的是由给定顶点组成三条边的面(三角形),如果需要改一条边的话,只需要改变组成此边的两个顶点就好了。下图中黄色标记的即为一条边。
Face
Face is a triangle. Face is a surface between three corner vertices and three surrounding edges. Transforming a face affects all connected vertices, edges and polygons.
面即三角形,面是由三个顶点组成的一个平面,它被三条边所环绕着。移动一个面,将影响到所以连接的顶点,边和多边形(为什么有多边形呢?)
The order does matter.
顺序很重要!
When winding up the faces it's important to do it in the right direction because the direction defines what side will be the front face and what side will be the back face. Why this is important is because to gain performance we don't want to draw both sides so we turn off the back face. So it's a good idea to use the same winding all over your project. It is possible to change what direction that defines the front face with glFrontFace.
当你转动一个面的时候,重要的是定义正确的方向,因为方向决定了(在转动时)哪个面在前面,哪个面在背面。为什么重要呢?因为画的时候,不需要同时画背面与前面(就像你看着电脑屏幕时,你看不到背面,但当你转动一定角度时,你可以看到背面了)。因此在工程中使用相同的转动方向是一个不确的选择,可以使用glFrontFace函数来定义方向。
gl.glFrontFace(GL10.GL_CCW); // OpenGL docs
To make OpenGL skip the faces that are turned into the screen you can use something called back-face culling. What is does is determines whether a polygon of a graphical object is visible by checking if the face is wind up in the right order.
如果需要OpenGL 跳过(不画)背面,可以启用一个叫做背面遮挡功能,在面转动方向正确的前提下,它决定了图形对象的多边形是否可见。
下面的代码为启用遮挡功能
gl.glEnable(GL10.GL_CULL_FACE); // OpenGL docs
It's ofcource possible to change what face side should be drawn or not.
下面的代码决定遮挡掉背面(如你画一个正方体,将在屏幕上看不到底面)
gl.glCullFace(GL10.GL_BACK); // OpenGL docs
Polygon
Time to wind the faces, remember we have decided to go with the default winding meaning counter-clockwise. Look at the image to the right and the code below to see how to wind up this square.
请看右边的图,我们使用下面的代码来定义顶点顺序数组以构造图中的面(默认方面是逆时针)
wind该如何翻译?
private short[] indices = { 0, 1, 2, 0, 2, 3 };
To gain some performance we also put this ones in a byte buffer.
同样,我们使用字节缓冲以提高性能。
// short is 2 bytes, therefore we multiply the number if vertices with 2.字节缓冲长度为数组大小x2.(一个short占用2字节)
ByteBuffer ibb = ByteBuffer.allocateDirect(indices.length * 2);
ibb.order(ByteOrder.nativeOrder());
ShortBuffer indexBuffer = ibb.asShortBuffer();
indexBuffer.put(indices);
indexBuffer.position(0);
Don't forget that a short is 2 bytes and to multiply it with the number of indices to get the right size on the allocated buffer.
Render
Time to get something on the screen, there is two functions used to draw and we have to decide which one to use.
下面该在屏幕上展现一些东西了,绘画有以下两个函数
The two functions are:
public abstract void glDrawArrays(int mode, int first, int count) // OpenGL docs
glDrawArrays draws the vertices in that order they are specified in the construction of our verticesBuffer.
glDrawArrays按照构造verticesBuffer指定的顺序来画
public abstract void glDrawElements(int mode, int count, int type, // OpenGL docs
Buffer indices)
glDrawElements need a little bit more to be able to draw. It needs to know the order which to draw the vertices, it needs the indicesBuffer.
glDrawElements可能用得更多,它需要知道绘画顶点的顺序,所以需要顶点顺序数组。
Since we already created the indicesBuffer I'm guessing that you figured out that's the way we are going.
在上面的代码中,我们指定了顶点顺序数组,所以,我想你应该知道下面该做什么了吧
What is common for this functions is that they both need to know what it is they should draw, what primitives to render. Since there is some various ways to render this indices and some of them are good to know about for debugging reasons. I'll go through them all.
这两个函数都有一个名为int类型的形参,它告诉OpenGL ES需要画什么(点,线,面),在这里姑且称之为(原始的)展现方式吧,它有许多种,请见下:
What primitives to render
GL_POINTS
Draws individual points on the screen.
画单独的点
GL_LINE_STRIP
Series of connected line segments.画线
GL_LINE_LOOP
Same as above, with a segment added between last and first vertices.画线,与上面不同的时,多画了一条由首尾顶点的连线。
GL_LINES
Pairs of vertices interpreted as individual line segments.画由两个顶点对组成的线
GL_TRIANGLES
Triples of vertices interpreted as triangles.画三角形
GL_TRIANGLE_STRIP
Draws a series of triangles (three-sided polygons) using vertices v0, v1, v2, then v2, v1, v3 (note the order), then v2, v3, v4, and so on. The ordering is to ensure that the triangles are all drawn with the same orientation so that the strip can correctly form part of a surface.画一系列三角形,先v0,v1,v2,再v2,v1,v3(注意顺序),再v2,v3,v4依此类推下去。顺序是为了确保三角形在同一个方向上绘画,使得可以正确的形成一个平面的一部分。
GL_TRIANGLE_FAN
Same as GL_TRIANGLE_STRIP, except that the vertices are drawn v0, v1, v2, then v0, v2, v3, then v0, v3, v4, and so on.
类似 GL_TRIANGLE_STRIP模式,只是顶点顺序为v0,v1,v2,然后v0,v2,v3,再v0,v3,v4.
I think the GL_TRIANGLES is the easiest to use so we go with that one for now.
我想 GL_TRIANGLES是最容易使用的了,因此我们用它来画(正方形)
Putting it all togetter
So let's putting our square together in a class.
package se.jayway.opengl.tutorial;
import java.nio.ByteBuffer;
import java.nio.ByteOrder;
import java.nio.FloatBuffer;
import java.nio.ShortBuffer;
import javax.microedition.khronos.opengles.GL10;
public class Square {
// Our vertices.
private float vertices[] = {
-1.0f, 1.0f, 0.0f, // 0, Top Left
-1.0f, -1.0f, 0.0f, // 1, Bottom Left
1.0f, -1.0f, 0.0f, // 2, Bottom Right
1.0f, 1.0f, 0.0f, // 3, Top Right
};
// The order we like to connect them.
private short[] indices = { 0, 1, 2, 0, 2, 3 };
// Our vertex buffer.
private FloatBuffer vertexBuffer;
// Our index buffer.
private ShortBuffer indexBuffer;
public Square() {
// a float is 4 bytes, therefore we multiply the number if
// vertices with 4.
ByteBuffer vbb = ByteBuffer.allocateDirect(vertices.length * 4);
vbb.order(ByteOrder.nativeOrder());
vertexBuffer = vbb.asFloatBuffer();
vertexBuffer.put(vertices);
vertexBuffer.position(0);
// short is 2 bytes, therefore we multiply the number if
// vertices with 2.
ByteBuffer ibb = ByteBuffer.allocateDirect(indices.length * 2);
ibb.order(ByteOrder.nativeOrder());
indexBuffer = ibb.asShortBuffer();
indexBuffer.put(indices);
indexBuffer.position(0);
}
/**
* This function draws our square on screen.
* @param gl
*/
public void draw(GL10 gl) {
// Counter-clockwise winding.
gl.glFrontFace(GL10.GL_CCW); // OpenGL docs
// Enable face culling.
gl.glEnable(GL10.GL_CULL_FACE); // OpenGL docs
// What faces to remove with the face culling.
gl.glCullFace(GL10.GL_BACK); // OpenGL docs
// Enabled the vertices buffer for writing and to be used during
// rendering.
gl.glEnableClientState(GL10.GL_VERTEX_ARRAY);// OpenGL docs.
// Specifies the location and data format of an array of vertex
// coordinates to use when rendering.
gl.glVertexPointer(3, GL10.GL_FLOAT, 0, // OpenGL docs
vertexBuffer);
gl.glDrawElements(GL10.GL_TRIANGLES, indices.length,// OpenGL docs
GL10.GL_UNSIGNED_SHORT, indexBuffer);
// Disable the vertices buffer.
gl.glDisableClientState(GL10.GL_VERTEX_ARRAY); // OpenGL docs
// Disable face culling.
gl.glDisable(GL10.GL_CULL_FACE); // OpenGL docs
}
}
We have to initialize our square in the OpenGLRenderer class.
// Initialize our square.
Square square = new Square();
And in the draw function call on the square to draw.
public void onDrawFrame(GL10 gl) {
// Clears the screen and depth buffer.
gl.glClear(GL10.GL_COLOR_BUFFER_BIT | // OpenGL docs.
GL10.GL_DEPTH_BUFFER_BIT);
// Draw our square.
square.draw(gl); // ( NEW )
}
If you run the application now the screen is still black. Why? Because OpenGL ES render from where the current position is, that by default is at point: 0, 0, 0 the same position that the view port is located. And OpenGL ES don’t render the things that are too close to the view port. The solution to this is to move the draw position a few steps into the screen before rendering the square:
如何你运行此程序,你可以看到屏幕还是黑的,为什么呢?因为OpenGL Es从当前点(默认为0,0,0)开始渲染,此点被视窗占据了,OpenGL ES不会在太靠近此点的地方进行渲染。解决办法是在渲染之前将绘画点向Z轴负方向移动
// Translates 4 units into the screen.
gl.glTranslatef(0, 0, -4); // OpenGL docs
I will talk about the different transformations in the next tutorial.
有关移动的详细说明,将在下个教程中讨论
Run the application again and you will see that the square is drawn but quickly moves further and further into the screen. OpenGL ES doesn’t reset the drawing point between the frames that you will have to do yourself:
再次运行程序,你将看到方块展现出来了,但是很快地,它飞得越来越远(越来越小)以至消失在屏幕中。这是因为OpenGL ES在画帧时没有重置绘画点,这是需要手动去设置的。
// Replace the current matrix with the identity matrix
gl.glLoadIdentity(); // OpenGL docs
Now if you run the application you will see the square on a fixed position.
References
The info used in this tutorial is collected from:
Android Developers
OpenGL ES 1.1 Reference Pages
You can download the source for this tutorial here: Tutorial_Part_II
You can also checkout the code from: code.google.com
Previous tutorial: OpenGL ES Tutorial for Android – Part I – Setting up the view
Next tutorial: OpenGL ES Tutorial for Android – Part III – Transformations
Per-Erik Bergman
Consultant at Jayway
OpenGL ES Tutorial for Android – Part III – Transformations
January 1st, 2010 by Per-Erik Bergman — Android, Embedded
Last tutorial was about building your polygons. This tutorial is all about transformations, how to move the polygons around. I will continue this tutorial from where the previous ended so you can use that source code or make a copy of it.
上一教程详述了多边形的创建,本教程将讲述移动与变换。本教程以前一教程为基础(本系列教程也都遵照此原则)
I am not going to bore you with a lot of mathematics but I believe it is important to know that when OpenGL render a mesh it multiplies all vertices with a matrix. All the transformations you do are about manipulating the vertices in different ways by modifying this matrix. You can think of the matrix as a paper and that you never move the pen before you start to draw. You always draw in the center. But by doing a translation on the matrix you are moving the paper and also the center. A rotation is like rotating the paper around the center. And a scale is a bit harder to visualize with the paper view but it is like changing the unit size regarding to how you translate your meshes. Usually you talk about transformations according to the mesh not the world, but it is still important to know about.
在这里,我不打算讲一些算法以使你感到厌倦,但我相信知道OpenGL在展现网格时矩阵相乘原理是很重要的。所有的移动变换都是通过不同方式的矩阵相乘得到。你可以这样认为,矩阵是一张纸,在开始绘画之前,你没有移动笔,笔的位置固定在纸中心。做矩阵变换相当于移动纸(和中心点)旋转可以看做是纸绕着中心点旋转。缩放的话,理解更难一点,可以看做是更改网格纸的网格大小。
Coordinate System
OpenGL uses a so called right-handed coordinate system. A system is called right-handed if you look from the positive end towards the origin of the axis the counter-clockwise rotation is considered to be a positive rotation.
OpenGL 使用一种称之为右手坐标系,坐标轴末端相对于原点为正方向,逆时针方向视为正向旋转。
When you have started up your view and haven't applied any transformations the axis are aligned like this: The x-axis goes from left to right, the y-axis comes from the bottom and goes up and the z-axis is moving from the back of the screen towards the front of the screen.
当启动OpenGL视图,并未应用任何移动变换的话,那么各轴方向为:X轴是从左到右,Y轴从下到上,Z轴从背面到前面。如右图所示
Translate
public abstract void glTranslatef (float x, float y, float z) //OpenGL docs.
A translations added to the matrix makes the mesh appear as it has been moved. Translations are made along the axis and with no rotation added the axis are in there default state. Translation affects all the vertices in a polygon the same amount over the same axis. Translations are simply additions and subtractions to a current value. The image to the right shows a translation in 2 dimensions
移动是矩阵的相加,看起来像是网格在移动一样,移动按当前状态分别在三个轴的方向相加。移动导致多边形上的所有顶点在相同轴上相加一个相等的偏移量。因移动方向有正有负,所以也可以认为移动是在当前值进行加或减操作。右图显示的是一个2D的移动。
The start point is {x:-2, y:1} we like to go to {x:1, y:3} so we add {x:3, y:2}.
A simple addition: {x:-2, y:1} + {x:3, y:2} = {x:-2 + 3, y:1 + 2} = {x:1, y:3}.
In 3 dimensions we do the same, if we are located at position: {x:1, y:1, z:0} and we like to move 3 units into the screen we add {x:0, y:0, z:-3} and end up at: {x:1, y:1, z:-3}.
In the last tutorial we moved the square 4 units into the screen just to be able to see the square. What we did was that we added {x:0, y:0, z:-4} to the current position. This is the code we used for the translation:
在上个教程中,将方块指向屏幕内部方向移动4单位,相当于对当前位置做了一个{x:0, y:0, z:-4}的移动。
// Translates 4 units into the screen.
gl.glTranslatef(0, 0, -4); OpenGL docs.
If you do several translations after each other the order of the movement is along the X, Y and Z axis, in that order. On translate the order isn't so important but when we do a rotation it's really important.
当进行多次移动时,无论移动的顺序如何,最终结果是一样的。移动与顺序无关。但旋转就有关了。
It can be quite tricky to remember how the axis are aligned. Fortunate there is a good trick to remember the direction of the axis. Hold your left hand like the photo below. The point on each finger represents the positive direction on one axis. Your thumb is y-axis, index finger is x-axis and your middle finger would represent the z-axis. When I first started with 3D programming I actually wrote the letters, x, y and z on my fingers
对于记住坐标轴的对齐位置非常棘手,(我不认为这是一件困难的事,包括关于矩阵的相加与相乘的原理在高中时期就已经全面的学过了。)这里作者提供了一种快速记忆的方式,按如下图,伸出你的左手,掌心向着身体,食指方向为X轴,拇指方向为Y轴,中指方向为Z轴,在作者刚开始学3D编程时,常常将X,Y,Z写在手指上的。
Rotate
public abstract void glRotatef(float angle, float x, float y, float z)//OpenGL docs.
Rotating is what it sounds like. You add a rotation to the matrix making it appears like the mesh are rotated. With no translation before the rotation is around the origo. The x, y and z values defines the vector to rotate around. The angle value is the number of degrees to rotate.
旋转可以看作是对网格的转动,如何未做移动的话,那么认为按原点进行旋转。X,y,z值定义了旋转的中心点,旋转的单位是角度(不是弧度)。
If you remember these three things you will manage rotation quite easy.
1. The rotation value are in degrees.
Most frameworks and math functions on computers use radians but OpenGL use degrees.
许多计算机上的框架和数学函数旋转值使用的是弧度,但是OpenGL不一样,它使用的角度。
2. When doing several rotations the order are important.
If you like to restore a rotation you negate the angle or all the axis like this:
glRotatef(angle, x, y, z) is restored with glRotatef(angle, -x, -y, -z) or glRotatef(-angle, x, y, z).
如果你想要还原的话,可以再转相同的负角底,或是按各轴的相反值进行旋转。如做了glRotatef(angle, x, y, z),想要还原的话,可以使用glRotatef(-angle, x, y, z)或glRotatef(angle, -x, -y, -z)
But if you do several rotations after each other like this:
参考下图,各旋转之后的色子如下(绿色的箭头是X轴方向,蓝色的是Y轴方向,红色的为Z轴方向)
gl.glRotatef(90f, 1.0f, 0.0f, 0.0f); // OpenGL docs.
gl.glRotatef(90f, 0.0f, 1.0f, 0.0f); // OpenGL docs.
gl.glRotatef(90f, 0.0f, 0.0f, 1.0f); // OpenGL docs.
And want to restore the mesh to it's original position you can't just negate the angle like this:
gl.glRotatef(90f, -1.0f, 0.0f, 0.0f); // OpenGL docs.
gl.glRotatef(90f, 0.0f, -1.0f, 0.0f); // OpenGL docs.
gl.glRotatef(90f, 0.0f, 0.0f, -1.0f); // OpenGL docs.
You have to revert the order of the rotations as well like this:
gl.glRotatef(90f, 0.0f, 0.0f, -1.0f); // OpenGL docs.
gl.glRotatef(90f, 0.0f, -1.0f, 0.0f); // OpenGL docs.
gl.glRotatef(90f, -1.0f, 0.0f, 0.0f); // OpenGL docs.
The order of several rotations is important.
旋转的顺序很重要!!
3. If you look from the positive end towards the origin of the axis the positive rotation is counter-clockwise.
如果你视末端点为正方向,相对于原点,正向旋转为逆时针方向
If you take a pencil in your hand, let the point be in the same direction as your thumb, as in the picture below, then aligns the pencil with the x-axis. Let the pencil's point be aligned with the positive direction of the axis. Your other fingers will now point in the positive direction of the rotation over that axis.
Translate & Rotate
Since both rotation and translations are made within each mesh own coordinate system it is important to remember that the order you do the translation and rotation are very important.
当同时进行移动和旋转的时候,请记住移动与旋转的顺序,这很重要,关系到最终的结果。
If you do a translation on the mesh first and then rotate it, the translation is made on the current state of the mesh coordinate system and then rotated at the new location.
如下图,先平移再旋转
If you first rotate and the move the mesh it will be moved accordingly to its own rotated coordinate system.
下图为先旋转,后平移的结果
Scale
public abstract void glScalef (float x, float y, float z) // OpenGL docs.
Scaling is just as it sounds and it is possible to scale over each axis separately. Scaling is the same as multiplying all vertexes with the same scalar. In the image below we scale with: gl.glScalef(2f, 2f, 2f). That means that we multiply all vertixes with 2.
缩放可以认为在每个轴方向进行单独的缩放。下图展示的是进行缩放2的结果
Translate & Scale
The order of scaling and translating does matter. If you translate before scaling the transformation is intact. Like this example, first a translation of 2 units and then scale it by 0.5.
同时进行移动与缩放,他们的先后顺序也是很重要的。请看下面的图,是先执行平移,再缩放的结果
gl.glTranslatef(2, 0, 0); // OpenGL docs.
gl.glScalef(0.5f, 0.5f, 0.5f); // OpenGL docs.
But if you scale before the translation you get a different result. Since you scale the mesh coordinate system then do the translation you will not move the mesh the same amount as you would before the scaling. So if you first scale with 0.5 and then do a translation of 2 units the result will appear as a translation of 1 unit.
但是如果你先缩放,再平移的话,那么,你将得到一个不同的结果。因为缩放,相当于将网格的单位值变更了。再平移的话,平衡量就不一样了。如之前的代码,先做绽放0.5,再平移2,最终平移相当于1,如下图
gl.glScalef(0.5f, 0.5f, 0.5f); // OpenGL docs.
gl.glTranslatef(2, 0, 0); // OpenGL docs.
Load Identity, push and pop matrix
When you translate, rotate or scaling you are not applying the transformation from the same preconditions, you are applying them to the previous transition. You need to be able to reset the position.
在进行平移,旋转,缩放时,如果你不想应用一些预处理来恢复到变换前的状态,可以重新当前矩阵达到同样的效果。
glLoadIdentity
public abstract void glLoadIdentity() // OpenGL docs.
glLoadIdentity replaces the current matrix with the identity matrix. It is the same as calling glLoadMatrix with the identity matrix:
glLoadIdentity的作用是将单位矩阵替换当前矩阵,等同于使用以下矩阵:
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
There are situations where you don't want to reset the model matrix, you rather want to go back to how it was just before your latest transformation.
如果你不想重围模型矩阵的话,只是想简单的回到刚才变换前的矩阵,可以使用以下函数:
glPushMatrix
public abstract void glPushMatrix() // OpenGL docs.
glPushMatrix makes a copy of the current matrix and put it on the stack. This means that when you do any kind of translations after glPushMatrix you are doing them on a copy.
作用是生成当前矩阵的拷贝,并将其压入栈中,这意味着在此之后,你对矩阵的任何操作,实际上相当于对复本的操作,不影响到原来的矩阵。
glPopMatrix
public abstract void glPopMatrix() // OpenGL docs.
To get back to the previous matrix you use the glPushMatrix command.
A good practice can be to have one glLoadIdentity in the begining of each frame and after that use glPushMatrix and glPopMatrix.
恢复到使用glPushMatrix之前的矩阵。推荐的做法是在帧开始时使用glLoadIdentity,然后后面使用glPushMatrix和glPopMatrix。
Putting it all togetter
So to make something with this new knowlege let us do 3 squares call them A, B and C. Scale them so that B is 50% smaller then A and C is 50% smaller then B. Then let A rotate counter-clockwise in the center of the screen. B should rotate clockwise around A and finaly C rotating clockwise around B and counter-clockwise in a high speed around it's own center.
在这里,我们使用三个方块A,B,C来模拟太阳,地球和月亮。其中B为A绽放50%的结果,C是B缩放50%的结果。A逆时针自转。B绕A顺时针转。C绕B顺时针转,并且高速逆时针自转
public void onDrawFrame(GL10 gl) { // Clears the screen and depth buffer. gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); // Replace the current matrix with the identity matrix gl.glLoadIdentity(); // Translates 10 units into the screen. gl.glTranslatef(0, 0, -10); // SQUARE A // Save the current matrix. gl.glPushMatrix(); // Rotate square A counter-clockwise. gl.glRotatef(angle, 0, 0, 1); // Draw square A. square.draw(gl); // Restore the last matrix. gl.glPopMatrix(); // SQUARE B // Save the current matrix gl.glPushMatrix(); // Rotate square B before moving it, making it rotate around A. gl.glRotatef(-angle, 0, 0, 1); // Move square B. gl.glTranslatef(2, 0, 0); // Scale it to 50% of square A gl.glScalef(.5f, .5f, .5f); // Draw square B. square.draw(gl); // SQUARE C // Save the current matrix gl.glPushMatrix(); // Make the rotation around B gl.glRotatef(-angle, 0, 0, 1); gl.glTranslatef(2, 0, 0); // Scale it to 50% of square B gl.glScalef(.5f, .5f, .5f); // Rotate around it's own center. gl.glRotatef(angle*10, 0, 0, 1); // Draw square C. square.draw(gl); // Restore to the matrix as it was before C. gl.glPopMatrix(); // Restore to the matrix as it was before B. gl.glPopMatrix(); // Increse the angle. angle++; }
And don't forget to add angel as a variable as well. Thanks Tim!
public class OpenGLRenderer implements Renderer {
private Square square;
private float angle; // Don't forget to add this.
...
References
The info used in this tutorial is collected from:
Android Developers
OpenGL ES 1.1 Reference Pages
You can download the source for this tutorial here: Tutorial_Part_III
You can also checkout the code from: code.google.com
Previous tutorial: OpenGL ES Tutorial for Android – Part II – Building a polygon
Next tutorial: OpenGL ES Tutorial for Android – Part IV – Adding colors
Per-Erik Bergman
Consultant at Jayway
关于关闭软键盘,网上一搜一大堆。但是都是不要软键盘自动弹出的解决方法。
真正的关闭网络其实是:
InputMethodManager imm = (InputMethodManager)mContext.getSystemService(Context.INPUT_METHOD_SERVICE);
imm.hideSoftInputFromWindow(storeId.getWindowToken(), 0);
mContext就是所以Activity.this就可以得到。
storeId 就是EditView