以前在线性代数中学习了矩阵,对矩阵的基本运算有一些了解,前段时间在使用GDI+的时候再次学习如何使用矩阵来变化图像,看了之后在这里总结说明。
首先大家看看下面这个3 x 3的矩阵,这个矩阵被分割成4部分。为什么分割成4部分,在后面详细说明。
首先给大家举个简单的例子:现设点P0(x0, y0)进行平移后,移到P(x,y),其中x方向的平移量为△x,y方向的平移量为△y,那么,点P(x,y)的坐标为:
x = x0 + △x
y = y0 + △y
采用矩阵表达上述如下:
上述也类似与图像的平移,通过上述矩阵我们发现,只需要修改矩阵右上角的2个元素就可以了。
我们回头看上述矩阵的划分:
为了验证上面的功能划分,我们举个具体的例子:现设点P0(x0 ,y0)进行平移后,移到P(x,y),其中x放大a倍,y放大b倍,
矩阵就是:,按照类似前面“平移”的方法就验证。
图像的旋转稍微复杂:现设点P0(x0, y0)旋转θ角后的对有点为P(x, y)。通过使用向量,我们得到如下:
x0 = r cosα
y0 = r sinα
x = r cos(α-θ) = x0 cosθ+ y0 sinθ
y = r sia(α-θ) = -x0 sinθ+y0 cosθ
于是我们得到矩阵:
如果图像围绕着某个点(a ,b)旋转呢?则先要将坐标平移到该点,再进行旋转,然后将旋转后的图像平移回到原来的坐标原点,在后面的篇幅中我们将详细介绍。
本篇幅我们就结合Android 中的android.graphics.Matrix来具体说明,还记得我们前面说的图像旋转的矩阵:
从最简单的旋转90度的是:
在android.graphics.Matrix中有对应旋转的函数:
Matrix matrix = new Matrix();
matrix.setRotate(90);
Test.Log(MAXTRIX_TAG,”setRotate(90):%s” , matrix.toString());
查看运行后的矩阵的值(通过Log输出):
与上面的公式基本完全一样(android.graphics.Matrix采用的是浮点数,而我们采用的整数)。
有了上面的例子,相信大家就可以亲自尝试了。通过上面的例子我们也发现,我们也可以直接来初始化矩阵,比如说要旋转30度:
前面给大家介绍了这么多,下面我们开始介绍图像的镜像,分为2种:水平镜像、垂直镜像。先介绍如何实现垂直镜像,什么是垂直镜像就不详细说明。图像的垂直镜像变化也可以用矩阵变化的表示,设点P0(x0 ,y0 )进行镜像后的对应点为P(x ,y ),图像的高度为fHeight,宽度为fWidth,原图像中的P0(x0 ,y0 )经过垂直镜像后的坐标变为(x0 ,fHeight- y0);
x = x0
y = fHeight – y0
推导出相应的矩阵是:
final float f[] = {1.0F,0.0F,0.0F,0.0F,-1.0F,120.0F,0.0F,0.0F,1.0F};
Matrix matrix = new Matrix();
matrix.setValues(f);
按照上述方法运行后的结果:
至于水平镜像采用类似的方法,大家可以自己去试试吧。
实际上,使用下面的方式也可以实现垂直镜像:
Matrix matrix = new Matrix();
matrix.setScale (1.0,-1.0);
matrix.postTraslate(0, fHeight);
packages/apps/Phone/src/com/android/phone/CallNotifier.java 267: private void onNewRingingConnection(AsyncResult r) { Connection c = (Connection) r.result; if (DBG) log("onNewRingingConnection(): " + c); PhoneUtils.answerCall(mPhone); /* answer incomming calls */