c语言实现二叉查找树实例方法
本文导语: 以下为算法详细流程及其实现。由于算法都用伪代码给出,就免了一些文字描述。 代码如下:/*******************************************=================JJ日记=====================作者: JJDiaries(阿呆) 邮箱:JJDiaries@gmail.com日期: 2013-11-13=============...
以下为算法详细流程及其实现。由于算法都用伪代码给出,就免了一些文字描述。
/*******************************************
=================JJ日记=====================
作者: JJDiaries(阿呆)
邮箱:JJDiaries@gmail.com
日期: 2013-11-13
============================================
二叉查找树,支持的操作包括:SERACH、MINIMUM、
MAXIMUM、PREDECESSOR、SUCCESSOR、INSERT、DELETE。
定理:对于一个高度为h的二叉查找树,操作SERACH、MINIMUM、
MAXIMUM、PREDECESSOR、SUCCESSOR的运行时间均为O(h)
*******************************************/
/*================JJ日记=====================
作者: JJDiaries(阿呆)
邮箱:JJDiaries@gmail.com
日期: 2013-11-13
============================================*/
#include
#include
#include
#define WORDLEN 16
//定义一个节点,除了存放key值外,还包含了一个data字符数组用于存放一个单词
struct node{
int key;
char data[WORDLEN];
struct node *parent;
struct node *left;
struct node *right;
};
typedef struct node * tree;
/*============================================
树的中序遍历
INORDER_TREE_WALK(x)
if x!=NIL
then INORDER_TREE_WALK(left[x])
print key[x]
INORDER_TREE_WALK(left[x])
============================================*/
void inorder_tree_walk(tree T)
{
if(T!=NULL){
inorder_tree_walk(T->left);
printf("key:%d words:%sn",T->key,T->data);
inorder_tree_walk(T->right);
}
}
/*============================================
树的搜索,返回含有关键字k的结点
TREE_SEARCH(x,k) //递归版本
if x=NIL or k =key[x]
then return x
if kright,k);
}
//非递归版本
struct node* tree_search1(tree T,int k)
{
while(T!=NULL && T->key!=k)
if(k < T->key)
T=T->left;
else
T=T->right;
return T;
}
/*============================================
返回key值最小的结点
TREE_MINIMUM(x)
while left[x]!=NIL
do x left != NULL)
T=T->left;
return T;
}
/*============================================
返回key值最大的结点
TREE_MAXMUM(x)
while right[x]!=NIL
do x right != NULL)
T=T->right;
return T;
}
/*============================================
中序遍历下,返回某一结点的后继结点
1)如果结点x有右子结点,则其后继结点为右子树中最小结点。
2)如果结点x没有右子树,且x有一个后继y,则y是x的最低祖先结点
且y的左儿子也是x的祖先。
TREE_SUCCESSOR(x)
if right[x] != NIL
return TREE_MINIMUM(right[x])
y=p[x]
while y!=NIL and x=right[y] //如果x=left[y],那么x的后继就是y,跳出while循环,直接返回y即可
do x right);
struct node *y=T->parent;
while(y!=NULL && T == y->right){
T=y;
y=y->parent;
}
return y;
}
/*===========================================
插入操作
思路:从根节点一路往下寻找插入位置,用指针x跟踪这条寻找路径,并用指针y指向x的父结点
TREE_INSERT(T,z)
y=NIL
x=root[T]
while x!= NIL //直到x为空,这个空位置即为需要插入的位置
do yright;
}
z->parent=y;
if(z->key < y->key)
y->left=z;
else
y->right=z;
}
/*===============================================
删除操作
删除操作分为三类情况:
1)若要删除的节点z没有子女,则只需修改z的父节点的该子女为NIL即可
2)若要删除的节点z只有一个子女,则只需将z的这个子女与z的父节点连接起来即可
3)若要删除的节点z有两个子女,则需要先删除z的后继y,再用y的内容替换z的内容。
TREE_DELETE(T,z)
if left[z]=NIL || right[z]=NIL //把要删除的节点先保存在y中
then y