当前位置: 编程技术>c/c++/嵌入式
深入遍历二叉树的各种操作详解(非递归遍历)
来源: 互联网 发布时间:2014-10-15
本文导语: 先使用先序的方法建立一棵二叉树,然后分别使用递归与非递归的方法实现前序、中序、后序遍历二叉树,并使用了两种方法来进行层次遍历二叉树,一种方法就是使用STL中的queue,另外一种方法就是定义了一个数组队列,分...
先使用先序的方法建立一棵二叉树,然后分别使用递归与非递归的方法实现前序、中序、后序遍历二叉树,并使用了两种方法来进行层次遍历二叉树,一种方法就是使用STL中的queue,另外一种方法就是定义了一个数组队列,分别使用了front和rear两个数组的下标来表示入队与出队,还有两个操作就是求二叉树的深度、结点数。。。
#include
#include
#include
using namespace std;
//二叉树结点的描述
typedef struct BiTNode
{
char data;
struct BiTNode *lchild, *rchild; //左右孩子
}BiTNode,*BiTree;
//按先序遍历创建二叉树
//BiTree *CreateBiTree() //返回结点指针类型
//void CreateBiTree(BiTree &root) //引用类型的参数
void CreateBiTree(BiTNode **root) //二级指针作为函数参数
{
char ch; //要插入的数据
scanf("n%c", &ch);
//cin>>ch;
if(ch=='#')
*root = NULL;
else
{
*root = (BiTNode *)malloc(sizeof(BiTNode));
(*root)->data = ch;
printf("请输入%c的左孩子:",ch);
CreateBiTree(&((*root)->lchild));
printf("请输入%c的右孩子:",ch);
CreateBiTree(&((*root)->rchild));
}
}
//前序遍历的算法程序
void PreOrder(BiTNode *root)
{
if(root==NULL)
return ;
printf("%c ", root->data); //输出数据
PreOrder(root->lchild); //递归调用,前序遍历左子树
PreOrder(root->rchild); //递归调用,前序遍历右子树
}
//中序遍历的算法程序
void InOrder(BiTNode *root)
{
if(root==NULL)
return ;
InOrder(root->lchild); //递归调用,前序遍历左子树
printf("%c ", root->data); //输出数据
InOrder(root->rchild); //递归调用,前序遍历右子树
}
//后序遍历的算法程序
void PostOrder(BiTNode *root)
{
if(root==NULL)
return ;
PostOrder(root->lchild); //递归调用,前序遍历左子树
PostOrder(root->rchild); //递归调用,前序遍历右子树
printf("%c ", root->data); //输出数据
}
/*
二叉树的非递归前序遍历,前序遍历思想:先让根进栈,只要栈不为空,就可以做弹出操作,
每次弹出一个结点,记得把它的左右结点都进栈,记得右子树先进栈,这样可以保证右子树在栈中总处于左子树的下面。
*/
void PreOrder_Nonrecursive2(BiTree T) //先序遍历的非递归
{
if(!T)
return ;
stack s;
s.push(T);
while(!s.empty())
{
BiTree temp = s.top();
coutlchild)
s.push(temp->lchild);
}
}
void PreOrder_Nonrecursive(BiTree T) //先序遍历的非递归
{
if(!T)
return ;
stack s;
while(T) // 左子树上的节点全部压入到栈中
{
s.push(T);
coutrchild == previsited)
{
coutlchild);
if(curr->rchild)
s1.push(curr->rchild);
}
while(!s2.empty())
{
printf("%c ", s2.top()->data);
s2.pop();
}
}
int visit(BiTree T)
{
if(T)
{
printf("%c ",T->data);
return 1;
}
else
return 0;
}
void LeverTraverse(BiTree T) //方法一、非递归层次遍历二叉树
{
queue Q;
BiTree p;
p = T;
if(visit(p)==1)
Q.push(p);
while(!Q.empty())
{
p = Q.front();
Q.pop();
if(visit(p->lchild) == 1)
Q.push(p->lchild);
if(visit(p->rchild) == 1)
Q.push(p->rchild);
}
}
void LevelOrder(BiTree BT) //方法二、非递归层次遍历二叉树
{
BiTNode *queue[10];//定义队列有十个空间
if (BT==NULL)
return;
int front,rear;
front=rear=0;
queue[rear++]=BT;
while(front!=rear)//如果队尾指针不等于对头指针时
{
coutrchild!=NULL)
{
queue[rear]=queue[front]->rchild; //将队首结点的右孩子指针入队列
rear++; //队尾指针后移一位
}
front++; //对头指针后移一位
}
}
int depth(BiTNode *T) //树的深度
{
if(!T)
return 0;
int d1,d2;
d1=depth(T->lchild);
d2=depth(T->rchild);
return (d1>d2?d1:d2)+1;
//return (depth(T->lchild)>depth(T->rchild)?depth(T->lchild):depth(T->rchild))+1;
}
int CountNode(BiTNode *T)
{
if(T == NULL)
return 0;
return 1+CountNode(T->lchild)+CountNode(T->rchild);
}
int main(void)
{
BiTNode *root=NULL; //定义一个根结点
int flag=1,k;
printf(" 本程序实现二叉树的基本操作。n");
printf("可以进行建立二叉树,递归先序、中序、后序遍历,非递归先序、中序遍历及非递归层序遍历等操作。n");
while(flag)
{
printf("n");
printf("|--------------------------------------------------------------|n");
printf("| 二叉树的基本操作如下: |n");
printf("| 0.创建二叉树 |n");
printf("| 1.递归先序遍历 |n");
printf("| 2.递归中序遍历 |n");
printf("| 3.递归后序遍历 |n");
printf("| 4.非递归先序遍历 |n");
printf("| 5.非递归中序遍历 |n");
printf("| 6.非递归后序遍历 |n");
printf("| 7.非递归层序遍历 |n");
printf("| 8.二叉树的深度 |n");
printf("| 9.二叉树的结点个数 |n");
printf("| 10.退出程序 |n");
printf("|--------------------------------------------------------------|n");
printf(" 请选择功能:");
scanf("%d",&k);
switch(k)
{
case 0:
printf("请建立二叉树并输入二叉树的根节点:");
CreateBiTree(&root);
break;
case 1:
if(root)
{
printf("递归先序遍历二叉树的结果为:");
PreOrder(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 2:
if(root)
{
printf("递归中序遍历二叉树的结果为:");
InOrder(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 3:
if(root)
{
printf("递归后序遍历二叉树的结果为:");
PostOrder(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 4:
if(root)
{
printf("非递归先序遍历二叉树:");
PreOrder_Nonrecursive(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 5:
if(root)
{
printf("非递归中序遍历二叉树:");
InOrderTraverse(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 6:
if(root)
{
printf("非递归后序遍历二叉树:");
PostOrder_Nonrecursive(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 7:
if(root)
{
printf("非递归层序遍历二叉树:");
//LeverTraverse(root);
LevelOrder(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 8:
if(root)
printf("这棵二叉树的深度为:%dn",depth(root));
else
printf(" 二叉树为空!n");
break;
case 9:
if(root)
printf("这棵二叉树的结点个数为:%dn",CountNode(root));
else
printf(" 二叉树为空!n");
break;
default:
flag=0;
printf("程序运行结束,按任意键退出!n");
}
}
system("pause");
return 0;
}
运行效果图如下:
/*
后序遍历由于遍历父节点是在遍历子节点之后,而且左节点和右节点遍历后的行为不一样,
所以需要用变量来记录前一次访问的节点,根据前一次节点和现在的节点的关系来确定具体执行什么操作
*/
void Postorder(BiTree T)
{
if(T == NULL)
return ;
stack s;
BiTree prev = NULL , curr = NULL;
s.push(T);
while(!s.empty())
{
curr = s.top();
if(prev == NULL || prev->lchild == curr || prev->rchild == curr)
{
if(curr->lchild != NULL)
s.push(curr->lchild);
else if(curr->rchild != NULL)
s.push(curr->rchild);
}
else if(curr->lchild == prev)
{
if(curr->rchild != NULL)
s.push(curr->rchild);
}
else
{
coutlchild , pNode , path) )
{
path.push_back(pRoot->lchild);
return true;
}
else if(GetNodePath(pRoot->rchild , pNode , path) )
{
path.push_back(pRoot->rchild);
return true;
}
return false;
}
TreeNode *GetLastCommonNode(const vector &path1 , const vector &path2)
{
vector::const_iterator iter1 = path1.begin();
vector::const_iterator iter2 = path2.begin();
TreeNode *pLast;
while(iter1 != path1.end() && iter2 != path2.end() )
{
if(*iter1 == *iter2)
pLast = *iter1;
else
break;
iter1++;
iter2++;
}
return pLast;
}
TreeNode *GetLastCommonParent(TreeNode *pRoot , TreeNode *pNode1 , TreeNode *pNode2)
{
if(pRoot == NULL || pNode1 == NULL || pNode2 == NULL)
return NULL;
vector path1;
GetNodePath(pRoot , pNode1 , path1);
vector path2;
GetNodePath(pRoot , pNode2 , path2);
return GetLastCommonNode(path1 , path2);
}
代码如下:
#include
#include
#include
using namespace std;
//二叉树结点的描述
typedef struct BiTNode
{
char data;
struct BiTNode *lchild, *rchild; //左右孩子
}BiTNode,*BiTree;
//按先序遍历创建二叉树
//BiTree *CreateBiTree() //返回结点指针类型
//void CreateBiTree(BiTree &root) //引用类型的参数
void CreateBiTree(BiTNode **root) //二级指针作为函数参数
{
char ch; //要插入的数据
scanf("n%c", &ch);
//cin>>ch;
if(ch=='#')
*root = NULL;
else
{
*root = (BiTNode *)malloc(sizeof(BiTNode));
(*root)->data = ch;
printf("请输入%c的左孩子:",ch);
CreateBiTree(&((*root)->lchild));
printf("请输入%c的右孩子:",ch);
CreateBiTree(&((*root)->rchild));
}
}
//前序遍历的算法程序
void PreOrder(BiTNode *root)
{
if(root==NULL)
return ;
printf("%c ", root->data); //输出数据
PreOrder(root->lchild); //递归调用,前序遍历左子树
PreOrder(root->rchild); //递归调用,前序遍历右子树
}
//中序遍历的算法程序
void InOrder(BiTNode *root)
{
if(root==NULL)
return ;
InOrder(root->lchild); //递归调用,前序遍历左子树
printf("%c ", root->data); //输出数据
InOrder(root->rchild); //递归调用,前序遍历右子树
}
//后序遍历的算法程序
void PostOrder(BiTNode *root)
{
if(root==NULL)
return ;
PostOrder(root->lchild); //递归调用,前序遍历左子树
PostOrder(root->rchild); //递归调用,前序遍历右子树
printf("%c ", root->data); //输出数据
}
/*
二叉树的非递归前序遍历,前序遍历思想:先让根进栈,只要栈不为空,就可以做弹出操作,
每次弹出一个结点,记得把它的左右结点都进栈,记得右子树先进栈,这样可以保证右子树在栈中总处于左子树的下面。
*/
void PreOrder_Nonrecursive2(BiTree T) //先序遍历的非递归
{
if(!T)
return ;
stack s;
s.push(T);
while(!s.empty())
{
BiTree temp = s.top();
coutlchild)
s.push(temp->lchild);
}
}
void PreOrder_Nonrecursive(BiTree T) //先序遍历的非递归
{
if(!T)
return ;
stack s;
while(T) // 左子树上的节点全部压入到栈中
{
s.push(T);
coutrchild == previsited)
{
coutlchild);
if(curr->rchild)
s1.push(curr->rchild);
}
while(!s2.empty())
{
printf("%c ", s2.top()->data);
s2.pop();
}
}
int visit(BiTree T)
{
if(T)
{
printf("%c ",T->data);
return 1;
}
else
return 0;
}
void LeverTraverse(BiTree T) //方法一、非递归层次遍历二叉树
{
queue Q;
BiTree p;
p = T;
if(visit(p)==1)
Q.push(p);
while(!Q.empty())
{
p = Q.front();
Q.pop();
if(visit(p->lchild) == 1)
Q.push(p->lchild);
if(visit(p->rchild) == 1)
Q.push(p->rchild);
}
}
void LevelOrder(BiTree BT) //方法二、非递归层次遍历二叉树
{
BiTNode *queue[10];//定义队列有十个空间
if (BT==NULL)
return;
int front,rear;
front=rear=0;
queue[rear++]=BT;
while(front!=rear)//如果队尾指针不等于对头指针时
{
coutrchild!=NULL)
{
queue[rear]=queue[front]->rchild; //将队首结点的右孩子指针入队列
rear++; //队尾指针后移一位
}
front++; //对头指针后移一位
}
}
int depth(BiTNode *T) //树的深度
{
if(!T)
return 0;
int d1,d2;
d1=depth(T->lchild);
d2=depth(T->rchild);
return (d1>d2?d1:d2)+1;
//return (depth(T->lchild)>depth(T->rchild)?depth(T->lchild):depth(T->rchild))+1;
}
int CountNode(BiTNode *T)
{
if(T == NULL)
return 0;
return 1+CountNode(T->lchild)+CountNode(T->rchild);
}
int main(void)
{
BiTNode *root=NULL; //定义一个根结点
int flag=1,k;
printf(" 本程序实现二叉树的基本操作。n");
printf("可以进行建立二叉树,递归先序、中序、后序遍历,非递归先序、中序遍历及非递归层序遍历等操作。n");
while(flag)
{
printf("n");
printf("|--------------------------------------------------------------|n");
printf("| 二叉树的基本操作如下: |n");
printf("| 0.创建二叉树 |n");
printf("| 1.递归先序遍历 |n");
printf("| 2.递归中序遍历 |n");
printf("| 3.递归后序遍历 |n");
printf("| 4.非递归先序遍历 |n");
printf("| 5.非递归中序遍历 |n");
printf("| 6.非递归后序遍历 |n");
printf("| 7.非递归层序遍历 |n");
printf("| 8.二叉树的深度 |n");
printf("| 9.二叉树的结点个数 |n");
printf("| 10.退出程序 |n");
printf("|--------------------------------------------------------------|n");
printf(" 请选择功能:");
scanf("%d",&k);
switch(k)
{
case 0:
printf("请建立二叉树并输入二叉树的根节点:");
CreateBiTree(&root);
break;
case 1:
if(root)
{
printf("递归先序遍历二叉树的结果为:");
PreOrder(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 2:
if(root)
{
printf("递归中序遍历二叉树的结果为:");
InOrder(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 3:
if(root)
{
printf("递归后序遍历二叉树的结果为:");
PostOrder(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 4:
if(root)
{
printf("非递归先序遍历二叉树:");
PreOrder_Nonrecursive(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 5:
if(root)
{
printf("非递归中序遍历二叉树:");
InOrderTraverse(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 6:
if(root)
{
printf("非递归后序遍历二叉树:");
PostOrder_Nonrecursive(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 7:
if(root)
{
printf("非递归层序遍历二叉树:");
//LeverTraverse(root);
LevelOrder(root);
printf("n");
}
else
printf(" 二叉树为空!n");
break;
case 8:
if(root)
printf("这棵二叉树的深度为:%dn",depth(root));
else
printf(" 二叉树为空!n");
break;
case 9:
if(root)
printf("这棵二叉树的结点个数为:%dn",CountNode(root));
else
printf(" 二叉树为空!n");
break;
default:
flag=0;
printf("程序运行结束,按任意键退出!n");
}
}
system("pause");
return 0;
}
运行效果图如下:
分别输入:
1
2
4
#
#
5
#
#
3
6
#
#
7
#
#
就可以构造如下图所示的二叉树了。。
后序遍历非递归的另外一种写法:
代码如下:
/*
后序遍历由于遍历父节点是在遍历子节点之后,而且左节点和右节点遍历后的行为不一样,
所以需要用变量来记录前一次访问的节点,根据前一次节点和现在的节点的关系来确定具体执行什么操作
*/
void Postorder(BiTree T)
{
if(T == NULL)
return ;
stack s;
BiTree prev = NULL , curr = NULL;
s.push(T);
while(!s.empty())
{
curr = s.top();
if(prev == NULL || prev->lchild == curr || prev->rchild == curr)
{
if(curr->lchild != NULL)
s.push(curr->lchild);
else if(curr->rchild != NULL)
s.push(curr->rchild);
}
else if(curr->lchild == prev)
{
if(curr->rchild != NULL)
s.push(curr->rchild);
}
else
{
coutlchild , pNode , path) )
{
path.push_back(pRoot->lchild);
return true;
}
else if(GetNodePath(pRoot->rchild , pNode , path) )
{
path.push_back(pRoot->rchild);
return true;
}
return false;
}
TreeNode *GetLastCommonNode(const vector &path1 , const vector &path2)
{
vector::const_iterator iter1 = path1.begin();
vector::const_iterator iter2 = path2.begin();
TreeNode *pLast;
while(iter1 != path1.end() && iter2 != path2.end() )
{
if(*iter1 == *iter2)
pLast = *iter1;
else
break;
iter1++;
iter2++;
}
return pLast;
}
TreeNode *GetLastCommonParent(TreeNode *pRoot , TreeNode *pNode1 , TreeNode *pNode2)
{
if(pRoot == NULL || pNode1 == NULL || pNode2 == NULL)
return NULL;
vector path1;
GetNodePath(pRoot , pNode1 , path1);
vector path2;
GetNodePath(pRoot , pNode2 , path2);
return GetLastCommonNode(path1 , path2);
}