当前位置:  编程技术>c/c++/嵌入式

求斐波那契(Fibonacci)数列通项的七种实现方法

    来源: 互联网  发布时间:2014-10-15

    本文导语:  一:递归实现使用公式f[n]=f[n-1]+f[n-2],依次递归计算,递归结束条件是f[1]=1,f[2]=1。二:数组实现空间复杂度和时间复杂度都是0(n),效率一般,比递归来得快。三:vector实现时间复杂度是0(n),时间复杂度是0(1),就是不知道vect...

一:递归实现
使用公式f[n]=f[n-1]+f[n-2],依次递归计算,递归结束条件是f[1]=1,f[2]=1。
二:数组实现
空间复杂度和时间复杂度都是0(n),效率一般,比递归来得快。
三:vector实现
时间复杂度是0(n),时间复杂度是0(1),就是不知道vector的效率高不高,当然vector有自己的属性会占用资源。
四:queue实现
当然队列比数组更适合实现斐波那契数列,时间复杂度和空间复杂度和vector一样,但队列太适合这里了,
f(n)=f(n-1)+f(n-2),f(n)只和f(n-1)和f(n-2)有关,f(n)入队列后,f(n-2)就可以出队列了。
五:迭代实现
迭代实现是最高效的,时间复杂度是0(n),空间复杂度是0(1)。
六:公式实现
百度的时候,发现原来斐波那契数列有公式的,所以可以使用公式来计算的。
由于double类型的精度还不够,所以程序算出来的结果会有误差,如果把公式展开计算,得出的结果就是正确的。
完整的实现代码如下:
代码如下:

#include "iostream"
#include "queue"
#include "cmath"
using namespace std;
int fib1(int index)     //递归实现
{
 if(index

    
 
 
 
本站(WWW.)旨在分享和传播互联网科技相关的资讯和技术,将尽最大努力为读者提供更好的信息聚合和浏览方式。
本站(WWW.)站内文章除注明原创外,均为转载、整理或搜集自网络。欢迎任何形式的转载,转载请注明出处。












  • 相关文章推荐




  • 特别声明:169IT网站部分信息来自互联网,如果侵犯您的权利,请及时告知,本站将立即删除!

    ©2012-2021,,E-mail:www_#163.com(请将#改为@)

    浙ICP备11055608号-3