当前位置:  操作系统/服务器>linux

linux多线程编程详解教程(线程通过信号量实现通信代码)

    来源: 互联网  发布时间:2014-10-15

    本文导语:  线程分类 线程按照其调度者可以分为用户级线程和核心级线程两种。 (1)用户级线程 用户级线程主要解决的是上下文切换的问题,它的调度算法和调度过程全部由用户自行选择决定,在运行时不需要特定的内核支持。在这里...

线程分类

线程按照其调度者可以分为用户级线程和核心级线程两种。

(1)用户级线程
用户级线程主要解决的是上下文切换的问题,它的调度算法和调度过程全部由用户自行选择决定,在运行时不需要特定的内核支持。在这里,操作系统往往会提供一个用户空间的线程库,该线程库提供了线程的创建、调度、撤销等功能,而内核仍然仅对进程进行管理。如果一个进程中的某一个线程调用了一个阻塞的系统调用,那么该进程包括该进程中的其他所有线程也同时被阻塞。这种用户级线程的主要缺点是在一个进程中的多个线程的调度中无法发挥多处理器的优势。

(2)核心级线程
这种线程允许不同进程中的线程按照同一相对优先调度方法进行调度,这样就可以发挥多处理器的并发优势。
现在大多数系统都采用用户级线程与核心级线程并存的方法。一个用户级线程可以对应一个或几个核心级线程,也就是“一对一”或“多对一”模型。这样既可满足多处理机系统的需要,也可以最大限度地减少调度开销。

Linux的线程实现是在核外进行的,核内提供的是创建进程的接口do_fork()。内核提供了两个系统调用clone()和fork(),最终都用不同的参数调用do_fork()核内API。当然,要想实现线程,没有核心对多进程(其实是轻量级进程)共享数据段的支持是不行的,因此,do_fork()提供了很多参数,包括CLONE_VM(共享内存空间)、CLONE_FS(共享文件系统信息)、 CLONE_FILES(共享文件描述符表)、CLONE_SIGHAND(共享信号句柄表)和CLONE_PID(共享进程ID,仅对核内进程,即0号进程有效)。当使用fork系统调用时,内核调用do_fork()不使用任何共享属性,进程拥有独立的运行环境,而使用 pthread_create()来创建线程时,则最终设置了所有这些属性来调用__clone(),而这些参数又全部传给核内的do_fork(),从而创建的“进程”拥有共享的运行环境,只有栈是独立的,由__clone()传入。

Linux线程在核内是以轻量级进程的形式存在的,拥有独立的进程表项,而所有的创建、同步、删除等操作都在核外pthread库中进行。pthread 库使用一个管理线程(__pthread_manager(),每个进程独立且唯一)来管理线程的创建和终止,为线程分配线程ID,发送线程相关的信号(比如Cancel),而主线程(pthread_create())的调用者则通过管道将请求信息传给管理线程。

主要函数说明

1.线程的创建和退出

pthread_create 线程创建函数
int pthread_create (pthread_t * thread_id,__const pthread_attr_t * __attr,void *(*__start_routine) (void *),void *__restrict __arg);

线程创建函数第一个参数为指向线程标识符的指针,第二个参数用来设置线程属性,第三个参数是线程运行函数的起始地址,最后一个参数是运行函数的参数。这里,我们的函数thread 不需要参数,所以最后一个参数设为空指针。第二个参数我们也设为空指针,这样将生成默认属性的线程。当创建线程成功时,函数返回0,若不为0 则说明创建线程失败,常见的错误返回代码为EAGAIN 和EINVAL。前者表示系统限制创建新的线程,例如线程数目过多了;后者表示第二个参数代表的线程属性值非法。创建线程成功后,新创建的线程则运行参数三和参数四确定的函数,原来的线程则继续运行下一行代码。

pthread_join 函数,来等待一个线程的结束。
函数原型为:int pthread_join (pthread_t __th, void **__thread_return)
第一个参数为被等待的线程标识符,第二个参数为一个用户定义的指针,它可以用来存储被等待线程的返回值。这个函数是一个线程阻塞的函数,调用它的函数将一直等待到被等待的线程结束为止,当函数返回时,被等待线程的资源被收回。线程只能被一个线程等待终止,并且应处于joinable状态(非detached)。

pthread_exit 函数
一个线程的结束有两种途径,一种是线程运行的函数结束了,调用它的线程也就结束了;
另一种方式是通过函数pthread_exit 来实现。它的函数原型为:void pthread_exit (void *__retval)唯一的参数是函数的返回代码,只要pthread_join 中的第二个参数thread_return 不是NULL,这个值将被传递给thread_return。最后要说明的是,一个线程不能被多个线程等待,否则第一个接收到信号的线程成功返回,其余调用pthread_join 的线程则返回错误代码ESRCH。

2.线程属性

pthread_create函数的第二个参数线程的属性。将该值设为NULL,也就是采用默认属性,线程的多项属性都是可以更改的。这些属性主要包括绑定属性、分离属性、堆栈地址、堆栈大小、优先级。其中系统默认的属性为非绑定、非分离、缺省1M 的堆栈、与父进程同样级别的优先级。下面首先对绑定属性和分离属性的基本概念进行讲解。

绑定属性:Linux中采用“一对一”的线程机制,也就是一个用户线程对应一个内核线程。绑定属性就是指一个用户线程固定地分配给一个内核线程,因为CPU时间片的调度是面向内核线程 (也就是轻量级进程)的,因此具有绑定属性的线程可以保证在需要的时候总有一个内核线程与之对应。而与之相对的非绑定属性就是指用户线程和内核线程的关系不是始终固定的,而是由系统来控制分配的。

分离属性:分离属性是用来决定一个线程以什么样的方式来终止自己。在非分离情况下,当一个线程结束时,它所占用的系统资源并没有被释放,也就是没有真正的终止。只有当pthread_join()函数返回时,创建的线程才能释放自己占用的系统资源。而在分离属性情况下,一个线程结束时立即释放它所占有的系统资源。
这里要注意的一点是,如果设置一个线程的分离属性,而这个线程运行又非常快,那么它很可能在pthread_create 函数返回之前就终止了,它终止以后就可能将线程号和系统资源移交给其他的线程使用,这时调用pthread_create 的线程就得到了错误的线程号。

设置绑定属性:

int pthread_attr_init(pthread_attr_t *attr)
int pthread_attr_setscope(pthread_attr_t *attr, int scope)
int pthread_attr_getscope(pthread_attr_t *tattr, int *scope)
scope:PTHREAD_SCOPE_SYSTEM:绑定,此线程与系统中所有的线程竞争 PTHREAD_SCOPE_PROCESS:非绑定,此线程与进程中的其他线程竞争

设置分离属性:

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate)
int pthread_attr_getdetachstate(const pthread_attr_t *tattr,int *detachstate)
detachstate PTHREAD_CREATE_DETACHED:分离 PTHREAD _CREATE_JOINABLE:非分离

设置调度策略:

int pthread_attr_setschedpolicy(pthread_attr_t * tattr, int policy)
int pthread_attr_getschedpolicy(pthread_attr_t * tattr, int *policy)
policy SCHED_FIFO:先入先出 SCHED_RR:循环 SCHED_OTHER:实现定义的方法

设置优先级:

int pthread_attr_setschedparam (pthread_attr_t *attr, struct sched_param *param)
int pthread_attr_getschedparam (pthread_attr_t *attr, struct sched_param *param)

3.线程访问控制

1)互斥锁(mutex)
通过锁机制实现线程间的同步。同一时刻只允许一个线程执行一个关键部分的代码。

1 int pthread_mutex_init(pthread_mutex_t *mutex,const pthread_mutex_attr_t *mutexattr);
2 int pthread_mutex_lock(pthread_mutex_t *mutex);
3 int pthread_mutex_unlock(pthread_mutex_t *mutex);
4 int pthread_mutex_destroy(pthread_mutex_t *mutex);

(1)先初始化锁init()或静态赋值pthread_mutex_t mutex=PTHREAD_MUTEX_INITIALIER
(2)加锁,lock,trylock,lock阻塞等待锁,trylock立即返回EBUSY
(3)解锁,unlock需满足是加锁状态,且由加锁线程解锁
(4)清除锁,destroy(此时锁必需unlock,否则返回EBUSY)

mutex 分为递归(recursive) 和非递归(non-recursive)两种,这是POSIX 的叫法,另外的名字是可重入(Reentrant) 与非可重入。这两种mutex 作为线程间(inter-thread) 的同步工具时没有区别,它们的惟一区别在于:同一个线程可以重复对recursive mutex 加锁,但是不能重复对non-recursive mutex 加锁。
首选非递归mutex,绝对不是为了性能,而是为了体现设计意图。non-recursive 和recursive 的性能差别其实不大,因为少用一个计数器,前者略快一点点而已。在同一个线程里多次对non-recursive mutex 加锁会立刻导致死锁,我认为这是它的优点,能帮助我们思考代码对锁的期求,并且及早(在编码阶段)发现问题。毫无疑问recursive mutex 使用起来要方便一些,因为不用考虑一个线程会自己把自己给锁死了,我猜这也是Java 和Windows 默认提供recursive mutex 的原因。(Java 语言自带的intrinsic lock 是可重入的,它的concurrent 库里提供ReentrantLock,Windows的CRITICAL_SECTION 也是可重入的。似乎它们都不提供轻量级的non-recursive mutex。)

2)条件变量(cond)
利用线程间共享的全局变量进行同步的一种机制。

1 int pthread_cond_init(pthread_cond_t *cond,pthread_condattr_t *cond_attr);
2 int pthread_cond_wait(pthread_cond_t *cond,pthread_mutex_t *mutex);
3 int pthread_cond_timedwait(pthread_cond_t *cond,pthread_mutex_t *mutex,const timespec *abstime);
4 int pthread_cond_destroy(pthread_cond_t *cond); 
5 int pthread_cond_signal(pthread_cond_t *cond);
6 int pthread_cond_broadcast(pthread_cond_t *cond);  //解除所有线程的阻塞


(1)初始化. init()或者pthread_cond_t cond=PTHREAD_COND_INITIALIER;属性置为NULL
(2)等待条件成立. pthread_cond_wait,pthread_cond_timedwait.
wait()释放锁,并阻塞等待条件变量为真
timedwait()设置等待时间,仍未signal,返回ETIMEOUT(加锁保证只有一个线程wait)
(3)激活条件变量:pthread_cond_signal,pthread_cond_broadcast(激活所有等待线程)
(4)清除条件变量:destroy; 无线程等待,否则返回EBUSY

代码如下:

int pthread_cond_wait(pthread_cond_t *cond, pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond, pthread_mutex_t *mutex, const struct timespec *abstime);

这两个函数一定要在mutex的锁定区域内使用。

调用 pthread_cond_signal() 释放被条件阻塞的线程时,如果没有任何线程基于条件变量阻塞,则调用pthread_cond_signal()不起作用。而对于 Windows,当调用 SetEvent 触发 Auto-reset 的 Event 条件时,如果没有被条件阻塞的线程,那么此函数仍然起作用,条件变量会处在触发状态。

Linux下生产者消费者问题(使用互斥锁和条件变量):

代码如下:

#include
#include
#include
#include "pthread.h"

#define BUFFER_SIZE 16

struct prodcons 

int buffer[BUFFER_SIZE]; 
pthread_mutex_t lock;  //mutex ensuring exclusive access to buffer
int readpos,writepos;  //position for reading and writing
pthread_cond_t notempty;  //signal when buffer is not empty
pthread_cond_t notfull;  //signal when buffer is not full
}; 

//initialize a buffer
void init(struct prodcons* b) 

pthread_mutex_init(&b->lock,NULL); 
pthread_cond_init(&b->notempty,NULL); 
pthread_cond_init(&b->notfull,NULL); 
b->readpos = 0; 
b->writepos = 0; 

//store an integer in the buffer
void put(struct prodcons* b, int data) 

pthread_mutex_lock(&b->lock); 
//wait until buffer is not full
while((b->writepos+1)%BUFFER_SIZE == b->readpos) 

printf("wait for not fulln"); 
pthread_cond_wait(&b->notfull,&b->lock); 
}
b->buffer[b->writepos] = data; 
b->writepos++;
b->writepos %= BUFFER_SIZE;
pthread_cond_signal(&b->notempty); //signal buffer is not empty
pthread_mutex_unlock(&b->lock); 
}

//read and remove an integer from the buffer
int get(struct prodcons* b) 

int data; 
pthread_mutex_lock(&b->lock); 
//wait until buffer is not empty
while(b->writepos == b->readpos) 

printf("wait for not emptyn"); 
pthread_cond_wait(&b->notempty,&b->lock); 
}
data=b->buffer[b->readpos]; 
b->readpos++;
b->readpos %= BUFFER_SIZE;
pthread_cond_signal(&b->notfull);  //signal buffer is not full
pthread_mutex_unlock(&b->lock); 
return data;
}

#define OVER -1

struct prodcons buffer; 

void * producer(void * data) 

int n; 
for(n=0; noccupied, 0, 0);
sem_init(&b->empty,0, BSIZE);
sem_init(&b->pmut, 0, 1);
sem_init(&b->cmut, 0, 1);
b->nextin = b->nextout = 0;
}

void producer(buffer_t *b, char item)
{
sem_wait(&b->empty);
sem_wait(&b->pmut);
b->buf[b->nextin] = item;
b->nextin++;
b->nextin %= BSIZE;
sem_post(&b->pmut);
sem_post(&b->occupied);
}

char consumer(buffer_t *b)
{
char item;
sem_wait(&b->occupied);
sem_wait(&b->cmut);
item = b->buf[b->nextout];
b->nextout++;
b->nextout %= BSIZE;
sem_post(&b->cmut);
sem_post(&b->empty);
return item;
}


    
 
 

您可能感兴趣的文章:

  • Windows和Linux下C++类成员方法作为线程函数方法介绍
  • 请问Linux核心支持多线程吗?开发库有线程库吗?线程好用吗?(稳定?)
  • Linux下GCC内置原子操作函数(多线程资源访问)介绍
  • 求个linux多线程编程的例子,要有线程池的 通用些更好
  • 请问Linux下线程开销为什么这么大?一个线程要占用近10M内存
  • Linux多线程时一些线程分不到时间片
  • 说说windows线程和linux线程的区别?
  • linux 下多线程 每个线程能否使用alarm来处理,信号是否会乱呢?
  • linux下,如何在多线程中每个线程设置一个定时器,在线等,急。。。谢谢
  • 在创建linux线程时为什么会多一个线程?
  • linux如何主动将线程放入到线程调度队列中重新排队?
  • 在linux RH73下为什么单进程只能开1021个线程线程.
  • Linux下如何让主线程挂起一个指定的时间段而子线程继续运行?谢谢
  • LINUX下有没有线程概念,和WIN下线程概念有什么不同,谢谢.
  • linux线程编程问题
  • linux线程最大数,奇怪,怎么只有300?而且线程是用完就没了,不是同时300啊!
  • 跪求:linux下pthread 双线程计算和单线程的运行时间完全相同是为什么?
  • linux线程与进程的问题
  • linux 下子线程不能执行的问题?
  • linux多线程编程的问题
  • linux多线程编程
  • 在linux下怎么使用信号量?
  • linux 中信号量的使用 当信号初始化的时候设置的值大于1将是如何?
  • 关于Linux下的信号量
  • 请问下,在嵌入式linux驱动里面可不可以用信号量?
  • linux中信号量实现原理
  • linux下信号量的释放的问题
  • linux服务器中,php页面中信号量锁住的问题,在线等
  • 在linux下有没有系统的命令可以看到某个信号量被哪个进程锁定?
  • linux posix信号量使用疑问
  • 靠,Linux提供给应用开发的信号量机制也太复杂了吧
  •  
    本站(WWW.)旨在分享和传播互联网科技相关的资讯和技术,将尽最大努力为读者提供更好的信息聚合和浏览方式。
    本站(WWW.)站内文章除注明原创外,均为转载、整理或搜集自网络。欢迎任何形式的转载,转载请注明出处。












  • 相关文章推荐
  • Linux/centos/redhat下各种压缩解压缩方式详解
  • linux 2.4 内核软中断详解?
  • linux c malloc函数定义及用法详解
  • 大家推荐几本详解Linux或unix 操作系统源代码的书籍!!!!
  • linux下进程占用内存空间详解
  • 哪有LINUX命令详解下??
  • Linux下NFS服务配置详解
  • 如何在Linux下使用脚本实现程序的自动重启!望各位详解!
  • linux下top命令详解包括top命令参数使用及结果(virt,res,shr)排序举例说明
  • 求linux kernel 2.6.30详解
  • SSL握手通信详解及linux下c/c++ SSL Socket代码举例
  • 读了tcpip详解后有问题,上边的源码是linux哪个版本的?
  • linux top命令详解以及top命令的各项使用技巧详细说明
  • 哪有linux源码的详解?
  • linux经常用到的命令详解
  • 第一次安装linux,提示找不到硬盘驱动,求详解!
  • linux加入windows域 是什么意思?求详解,加入后的效果是怎么样的
  • 求《LINUX设备驱动开发详解》电子版
  • 解析Linux系统中JVM内存2GB上限的详解
  • 求linux下 ./configure;make;make install一系列命令的详解
  • linux c 查找使用库的cflags与libs的方法详解
  • linux c/c++ IP字符串转换成可比较大小的数字
  • 在win分区上安装linux和独立分区安装linux有什么区别?可以同时安装吗?(两个linux系统)
  • linux c/c++ IP字符串转换成可比较大小的数字 iis7站长之家
  • 在虚拟机上安装的linux上,能像真的linux系统一样开发linux程序么?
  • secureCRT下Linux终端汉字乱码解决方法
  • 我重装window后,把linux的引导区覆盖了,进不了linux怎么办?急啊,望热心的人帮助 (现在有linux的盘)
  • Linux c字符串中不可打印字符转换成16进制
  • 安装vmware软件,不用再安装linux系统,就可以模拟linux系统了,然后可以在其上学习一下LINUX下的基本操作 了?
  • Linux常用命令介绍:更改所属用户群组或档案属性
  • 红旗Linux主机可以通过127.0.0.1访问,但如何是连网的Win2000机器通过Linux的IP去访问Linux


  • 站内导航:


    特别声明:169IT网站部分信息来自互联网,如果侵犯您的权利,请及时告知,本站将立即删除!

    ©2012-2021,,E-mail:www_#163.com(请将#改为@)

    浙ICP备11055608号-3