当前位置:  数据库>mysql

MySQL索引背后的之使用策略及优化(高性能索引策略)

    来源: 互联网  发布时间:2014-10-04

    本文导语:  本章的内容完全基于上文的理论基础,实际上一旦理解了索引背后的机制,那么选择高性能的策略就变成了纯粹的推理,并且可以理解这些策略背后的逻辑。   示例数据库   为了讨论索引策略,需要一个数据量不算小...

本章的内容完全基于上文的理论基础,实际上一旦理解了索引背后的机制,那么选择高性能的策略就变成了纯粹的推理,并且可以理解这些策略背后的逻辑。

  示例数据库

  为了讨论索引策略,需要一个数据量不算小的数据库作为示例。本文选用MySQL官方文档中提供的示例数据库之一:employees。这个数据库关系复杂度适中,且数据量较大。下图是这个数据库的E-R关系图(引用自MySQL官方手册):

  

 

  图12

  MySQL官方文档中关于此数据库的页面为http://dev.mysql.com/doc/employee/en/employee.html。里面详细介绍了此数据库,并提供了下载地址和导入方法,如果有兴趣导入此数据库到自己的MySQL可以参考文中内容。

  最左前缀原理与相关优化

  高效使用索引的首要条件是知道什么样的查询会使用到索引,这个问题和B+Tree中的“最左前缀原理”有关,下面通过例子说明最左前缀原理。

  这里先说一下联合索引的概念。在上文中,我们都是假设索引只引用了单个的列,实际上,MySQL中的索引可以以一定顺序引用多个列,这种索引叫做联合索引,一般的,一个联合索引是一个有序元组,其中各个元素均为数据表的一列,实际上要严格定义索引需要用到关系代数,但是这里我不想讨论太多关系代数的话题,因为那样会显得很枯燥,所以这里就不再做严格定义。另外,单列索引可以看成联合索引元素数为1的特例。

  以employees.titles表为例,下面先查看其上都有哪些索引:

SHOW INDEX FROM employees.titles;
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| Table  | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Null | Index_type |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+
| titles |          0 | PRIMARY  |            1 | emp_no      | A         |        NULL |      | BTREE      |
| titles |          0 | PRIMARY  |            2 | title       | A         |        NULL |      | BTREE      |
| titles |          0 | PRIMARY  |            3 | from_date   | A         |      443308 |      | BTREE      |
| titles |          1 | emp_no   |            1 | emp_no      | A         |      443308 |      | BTREE      |
+--------+------------+----------+--------------+-------------+-----------+-------------+------+------------+

 

  从结果中可以到titles表的主索引为,还有一个辅助索引。为了避免多个索引使事情变复杂(MySQL的SQL优化器在多索引时行为比较复杂),这里我们将辅助索引drop掉:

  ALTER TABLE employees.titles DROP INDEX emp_no;

  这样就可以专心分析索引PRIMARY的行为了。

 

  情况一:全列匹配。

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title='Senior Engineer' AND from_date='1986-06-26';
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| id | select_type | table  | type  | possible_keys | key     | key_len | ref               | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
|  1 | SIMPLE      | titles | const | PRIMARY       | PRIMARY | 59      | const,const,const |    1 |       |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+

 

  很明显,当按照索引中所有列进行精确匹配(这里精确匹配指“=”或“IN”匹配)时,索引可以被用到。这里有一点需要注意,理论上索引对顺序是敏感的,但 是由于MySQL的查询优化器会自动调整where子句的条件顺序以使用适合的索引,例如我们将where中的条件顺序颠倒:

EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26' AND emp_no='10001' AND title='Senior Engineer';
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
| id | select_type | table  | type  | possible_keys | key     | key_len | ref               | rows | Extra |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+
|  1 | SIMPLE      | titles | const | PRIMARY       | PRIMARY | 59      | const,const,const |    1 |       |
+----+-------------+--------+-------+---------------+---------+---------+-------------------+------+-------+

 

  效果是一样的。

  情况二:最左前缀匹配。

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
| id | select_type | table  | type | possible_keys | key     | key_len | ref   | rows | Extra |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+
|  1 | SIMPLE      | titles | ref  | PRIMARY       | PRIMARY | 4       | const |    1 |       |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------+

 

  当查询条件精确匹配索引的左边连续一个或几个列时,如或,所以可以被用到,但是只能用到一部分,即条件所组成的最左前缀。上面的查询从分析结果看用到了PRIMARY索引,但是 key_len为4,说明只用到了索引的第一列前缀。

  情况三:查询条件用到了索引中列的精确匹配,但是中间某个条件未提供。

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date='1986-06-26';
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
| id | select_type | table  | type | possible_keys | key     | key_len | ref   | rows | Extra       |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+
|  1 | SIMPLE      | titles | ref  | PRIMARY       | PRIMARY | 4       | const |    1 | Using where |
+----+-------------+--------+------+---------------+---------+---------+-------+------+-------------+

 

  此时索引使用情况和情况二相同,因为title未提供,所以查询只用到了索引的第一列,而后面的from_date虽然也在索引中,但是由于 title不存在而无法和左前缀连接,因此需要对结果进行扫描过滤from_date(这里由于emp_no唯一,所以不存在扫描)。如果想让 from_date也使用索引而不是where过滤,可以增加一个辅助索引,此时上面的查询会使用这个索引。除此之外,还可以使用一种称之为“隔离列”的优化方法,将emp_no与from_date 之间的“坑”填上。

  首先我们看下title一共有几种不同的值:

SELECT DISTINCT(title) FROM employees.titles;
+--------------------+
| title              |
+--------------------+
| Senior Engineer    |
| Staff              |
| Engineer           |
| Senior Staff       |
| Assistant Engineer |
| Technique Leader   |
| Manager            |
+--------------------+

 

  只有7种。在这种成为“坑”的列值比较少的情况下,可以考虑用“IN”来填补这个“坑”从而形成最左前缀:

EXPLAIN SELECT * FROM employees.titles
WHERE emp_no='10001'
AND title IN ('Senior Engineer', 'Staff', 'Engineer', 'Senior Staff', 'Assistant Engineer', 'Technique Leader', 'Manager')
AND from_date='1986-06-26';
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table  | type  | possible_keys | key     | key_len | ref  | rows | Extra       |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
|  1 | SIMPLE      | titles | range | PRIMARY       | PRIMARY | 59      | NULL |    7 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

 

  这次key_len为59,说明索引被用全了,但是从type和rows看出IN实际上执行了一个range查询,这里检查了7个key。看下两种查询的性能比较:

SHOW PROFILES;
+----------+------------+-------------------------------------------------------------------------------+
| Query_ID | Duration   | Query                                                                         |
+----------+------------+-------------------------------------------------------------------------------+
|       10 | 0.00058000 | SELECT * FROM employees.titles WHERE emp_no='10001' AND from_date='1986-06-26'|
|       11 | 0.00052500 | SELECT * FROM employees.titles WHERE emp_no='10001' AND title IN ...          |
+----------+------------+-------------------------------------------------------------------------------+

 

  “填坑”后性能提升了一点。如果经过emp_no筛选后余下很多数据,则后者性能优势会更加明显。当然,如果title的值很多,用填坑就不合适了,必须建立辅助索引。

  情况四:查询条件没有指定索引第一列。

EXPLAIN SELECT * FROM employees.titles WHERE from_date='1986-06-26';                  
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
| id | select_type | table  | type | possible_keys | key  | key_len | ref  | rows   | Extra       |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+
|  1 | SIMPLE      | titles | ALL  | NULL          | NULL | NULL    | NULL | 443308 | Using where |
+----+-------------+--------+------+---------------+------+---------+------+--------+-------------+

 

  由于不是最左前缀,索引这样的查询显然用不到索引。

  情况五:匹配某列的前缀字符串。

EXPLAIN SELECT * FROM employees.titles WHERE emp_no='10001' AND title LIKE 'Senior%';
view sourceprint?
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
| id | select_type | table  | type  | possible_keys | key     | key_len | ref  | rows | Extra       |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+
|  1 | SIMPLE      | titles | range | PRIMARY       | PRIMARY | 56      | NULL |    1 | Using where |
+----+-------------+--------+-------+---------------+---------+---------+------+------+-------------+

 

  此时可以用到索引,但是如果通配符不是只出现在末尾,则无法使用索引。

  情况六:范围查询。

EXPLAIN SELECT * FROM employees.titles WHERE emp_no


    
 
 

您可能感兴趣的文章:

  • MySQL查询优化之索引的应用详解 iis7站长之家
  • mysql 添加索引 mysql 如何创建索引
  • MySQL索引基本知识
  • MYSQL索引无效和索引有效的详细介绍
  • Mysql索引类型:Hash索引介绍及举例说明
  • mysql下普通索引和唯一索引的效率对比
  • MySQL Hash索引和B-Tree索引的区别
  • Mysql索引会失效的几种情况分析
  • MYSQL索引建立需要注意以下几点细节
  • MySQL查询优化之索引的应用详解
  • Oracle与Mysql主键、索引及分页的区别小结
  • mysql 表索引的一些要点
  • mysql中索引使用不当速度比没加索引还慢的测试
  • MySQL 创建索引(Create Index)的方法和语法结构及例子
  • mysql优化之路----hash索引优化
  • 关于MySQL索引的几点值得注意的事项
  • mysql创建Bitmap_Join_Indexes中的约束与索引
  • mysql 表空间及索引的查看方法
  • MySQL索引的缺点以及MySQL索引在实际操作中有哪些事项
  • MySQL 主键与索引的联系与区别分析
  • mysql5.6.19下子查询为什么无法使用索引
  • 貌似很强的mysql备份策略分享
  • MySQL的数据类型和建库策略分析详解
  • MySQL 数据类型和建库策略
  • 详解MYSQL自动备份策略的选择
  • MySQL 建表的优化策略 小结
  • Mysql主从同步备份策略分享
  •  
    本站(WWW.)旨在分享和传播互联网科技相关的资讯和技术,将尽最大努力为读者提供更好的信息聚合和浏览方式。
    本站(WWW.)站内文章除注明原创外,均为转载、整理或搜集自网络。欢迎任何形式的转载,转载请注明出处。












  • 相关文章推荐
  • MySQL 高性能存储引擎 TokuDB
  • 高性能KV型MySQL存储引擎 SeqDB
  • 高性能MySQL读书笔记 找出谁持有锁
  • mysql中如何查看最大连接数(max_connections)和修改最大连接数
  • 在 linux下输入"mysql"命令,进入mysql命令行,但出现“Can't connetc to local MySQL server thuough socket /var/lib/mysql/mysql.sock
  • Mysql查询错误:ERROR:no query specified原因
  • MySQL 重装MySQL后, mysql服务无法启动
  • php安装完成后如何添加mysql扩展
  • 为什么用linux安装盘安装了mysql后,启动mysql,提示找不到mysql.sock文件?
  • mysql中查询当前正在运行的SQL语句并找出mysql中运行慢的sql语句
  • 請教,在redhat linux7.2+mysql 中,系統提示mysql已啟動,網頁卻不能訪問mysql?
  • Myeclipse中自带Tomcat的JDBC连接池配置(mysql和mssql)
  • 求解释: useradd -g mysql mysql -d /home/mysql -s /sbin/nologin
  • MySQL Workbench的下载安装与使用教程
  • 在Linux内安装了Mysql,无法进入Mysql.
  • php中内置的mysql数据库连接驱动mysqlnd简介及mysqlnd的配置安装方式
  • 怎样在linux终端输入mysql直接进入mysql?
  • VS2012+MySQL+SilverLight5的MVVM开发模式介绍
  • c++中关于#include <mysql/mysql.h>的问题?
  • Mysql设置查询条件(where)查询字段为NULL
  • mysql -u root mysql 怎么解释
  • mysql中字符串和时间互相转换的方法(自动转换及DATE_FORMAT函数)
  • mm.mysql那里可以下载?www.mysql.com根本下载不了。谢谢了
  • java将类序列化并存储到mysql(使用hibernate)
  • MySQL集群 MySQL Cluster


  • 站内导航:


    特别声明:169IT网站部分信息来自互联网,如果侵犯您的权利,请及时告知,本站将立即删除!

    ©2012-2021,,E-mail:www_#163.com(请将#改为@)

    浙ICP备11055608号-3