当前位置:  编程技术>python

Python中的Numpy入门教程

    来源: 互联网  发布时间:2014-10-04

    本文导语:  1、Numpy是什么 很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。如果接触过matlab、scilab,那...

1、Numpy是什么

很简单,Numpy是Python的一个科学计算的库,提供了矩阵运算的功能,其一般与Scipy、matplotlib一起使用。其实,list已经提供了类似于矩阵的表示形式,不过numpy为我们提供了更多的函数。如果接触过matlab、scilab,那么numpy很好入手。 在以下的代码示例中,总是先导入了numpy:

代码如下:

>>> import numpy as np
>>> print np.version.version
1.6.2


2、多维数组

多维数组的类型是:numpy.ndarray。

使用numpy.array方法

以list或tuple变量为参数产生一维数组:

代码如下:
>>> print np.array([1,2,3,4])
[1 2 3 4]
>>> print np.array((1.2,2,3,4))
[ 1.2  2.   3.   4. ]
>>> print type(np.array((1.2,2,3,4)))

以list或tuple变量为元素产生二维数组:
代码如下:

>>> print np.array([[1,2],[3,4]])
[[1 2]
 [3 4]]

生成数组的时候,可以指定数据类型,例如numpy.int32, numpy.int16, and numpy.float64等:
代码如下:

>>> print np.array((1.2,2,3,4), dtype=np.int32)
[1 2 3 4]

使用numpy.arange方法
代码如下:

>>> print np.arange(15)
[ 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14]
>>> print type(np.arange(15))

>>> print np.arange(15).reshape(3,5)
[[ 0  1  2  3  4]
 [ 5  6  7  8  9]
 [10 11 12 13 14]]
>>> print type(np.arange(15).reshape(3,5))

使用numpy.linspace方法

例如,在从1到3中产生9个数:

代码如下:

>>> print np.linspace(1,3,9)
[ 1.    1.25  1.5   1.75  2.    2.25  2.5   2.75  3.  ]

使用numpy.zeros,numpy.ones,numpy.eye等方法可以构造特定的矩阵

例如:

代码如下:

>>> print np.zeros((3,4))
[[ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]
 [ 0.  0.  0.  0.]]
>>> print np.ones((3,4))
[[ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]
 [ 1.  1.  1.  1.]]
>>> print np.eye(3)
[[ 1.  0.  0.]
 [ 0.  1.  0.]
 [ 0.  0.  1.]]

创建一个三维数组:
代码如下:

>>> print np.zeros((2,2,2))
[[[ 0.  0.]
  [ 0.  0.]]

 [[ 0.  0.]
  [ 0.  0.]]]


获取数组的属性:
代码如下:

>>> a = np.zeros((2,2,2))
>>> print a.ndim   #数组的维数
3
>>> print a.shape  #数组每一维的大小
(2, 2, 2)
>>> print a.size   #数组的元素数
8
>>> print a.dtype  #元素类型
float64
>>> print a.itemsize  #每个元素所占的字节数
8


数组索引,切片,赋值

示例:

代码如下:

>>> a = np.array( [[2,3,4],[5,6,7]] )
>>> print a
[[2 3 4]
 [5 6 7]]
>>> print a[1,2]
7
>>> print a[1,:]
[5 6 7]
>>> print a[1,1:2]
[6]
>>> a[1,:] = [8,9,10]
>>> print a
[[ 2  3  4]
 [ 8  9 10]]

使用for操作元素
代码如下:

>>> for x in np.linspace(1,3,3):
...     print x
...
1.0
2.0
3.0


基本的数组运算

先构造数组a、b:

代码如下:

>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print a
[[ 1.  1.]
 [ 1.  1.]]
>>> print b
[[ 1.  0.]
 [ 0.  1.]]

数组的加减乘除:
代码如下:

>>> print a > 2
[[False False]
 [False False]]
>>> print a+b
[[ 2.  1.]
 [ 1.  2.]]
>>> print a-b
[[ 0.  1.]
 [ 1.  0.]]
>>> print b*2
[[ 2.  0.]
 [ 0.  2.]]
>>> print (a*2)*(b*2)
[[ 4.  0.]
 [ 0.  4.]]
>>> print b/(a*2)
[[ 0.5  0. ]
 [ 0.   0.5]]
>>> print (a*2)**4
[[ 16.  16.]
 [ 16.  16.]]

 使用数组对象自带的方法:

代码如下:

>>> a.sum()
4.0
>>> a.sum(axis=0)   #计算每一列(二维数组中类似于矩阵的列)的和
array([ 2.,  2.])
>>> a.min()
1.0
>>> a.max()
1.0

使用numpy下的方法:

代码如下:

>>> np.sin(a)
array([[ 0.84147098,  0.84147098],
       [ 0.84147098,  0.84147098]])
>>> np.max(a)
1.0
>>> np.floor(a)
array([[ 1.,  1.],
       [ 1.,  1.]])
>>> np.exp(a)
array([[ 2.71828183,  2.71828183],
       [ 2.71828183,  2.71828183]])
>>> np.dot(a,a)   ##矩阵乘法
array([[ 2.,  2.],
       [ 2.,  2.]])


合并数组

使用numpy下的vstack和hstack函数:

代码如下:

>>> a = np.ones((2,2))
>>> b = np.eye(2)
>>> print np.vstack((a,b))
[[ 1.  1.]
 [ 1.  1.]
 [ 1.  0.]
 [ 0.  1.]]
>>> print np.hstack((a,b))
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]

看一下这两个函数有没有涉及到浅拷贝这种问题:

代码如下:

>>> c = np.hstack((a,b))
>>> print c
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]
>>> a[1,1] = 5
>>> b[1,1] = 5
>>> print c
[[ 1.  1.  1.  0.]
 [ 1.  1.  0.  1.]]

可以看到,a、b中元素的改变并未影响c。


深拷贝数组

数组对象自带了浅拷贝和深拷贝的方法,但是一般用深拷贝多一些:

代码如下:
>>> a = np.ones((2,2))
>>> b = a
>>> b is a
True
>>> c = a.copy()  #深拷贝
>>> c is a
False

基本的矩阵运算

转置:

代码如下:

>>> a = np.array([[1,0],[2,3]])
>>> print a
[[1 0]
 [2 3]]
>>> print a.transpose()
[[1 2]
 [0 3]]

迹:
代码如下:
>>> print np.trace(a)
4

numpy.linalg模块中有很多关于矩阵运算的方法:
代码如下:

>>> import numpy.linalg as nplg

特征值、特征向量:

代码如下:

>>> print nplg.eig(a)
(array([ 3.,  1.]), array([[ 0.        ,  0.70710678],
       [ 1.        , -0.70710678]]))

3、矩阵

numpy也可以构造矩阵对象,这里不做讨论。


    
 
 

您可能感兴趣的文章:

  • Python下Html/xml解析库Beautiful Soup快速入门教程
  • Python3 入门教程 简单但比较不错
  • Python的ORM框架SQLAlchemy入门教程
  • Python2.5/2.6实用教程 入门基础篇
  • python基础教程之简单入门说明(变量和控制语言使用方法)
  • Python Socket编程入门教程
  • Python学习笔记(一)(基础入门之环境搭建)
  • 从零学Python之入门(二)基本数据类型
  • 从零学Python之入门(四)运算
  • Python程序设计入门(2)变量类型简介
  • 从零学Python之入门(五)缩进和选择
  • Python程序设计入门(4)模块和包
  • Python程序设计入门(5)类的使用简介
  • 从零学Python之入门(三)序列
  • Python类的基础入门知识
  • Python程序设计入门(3)数组的使用
  • Python的ORM框架SQLObject入门实例
  • Python入门及进阶笔记 Python 内置函数小结
  • Python-基础-入门 简介
  • python基础入门详解(文件输入/输出 内建类型 字典操作使用方法)
  • Python程序设计入门(1)基本语法简介
  •  
    本站(WWW.)旨在分享和传播互联网科技相关的资讯和技术,将尽最大努力为读者提供更好的信息聚合和浏览方式。
    本站(WWW.)站内文章除注明原创外,均为转载、整理或搜集自网络。欢迎任何形式的转载,转载请注明出处。












  • 相关文章推荐
  • Python 3 Tkinter教程之事件Event绑定处理代码实例
  • python基础教程之python消息摘要算法使用示例
  • juqery的python实现:pyquery学习使用教程
  • python基础教程之基本内置数据类型介绍
  • numpy官方下载安装以及numpy详细使用教程(Python科学计算)
  • python3编写C/S网络程序实例教程
  • Python中apply函数的用法实例教程
  • python基础教程之实现石头剪刀布游戏示例
  • Python Tkinter简单布局实例教程
  • python爬虫教程之爬取百度贴吧并下载的示例
  • Python时区设置方法与pytz查询时区教程
  • python基础教程之Hello World!
  • python基础教程之类class定义使用方法
  • python基础教程之lambda表达式使用方法
  • python进阶教程之文本文件的读取和写入
  • python基础教程之udp端口扫描
  • python基础教程之基本数据类型和变量声明介绍
  • python的类变量和成员变量用法实例教程
  • python基础教程之缩进介绍
  • python进阶教程之模块(module)介绍
  • python基础教程之常用运算符
  • Python GUI编程:tkinter实现一个窗口并居中代码
  • 让python同时兼容python2和python3的8个技巧分享
  • Python不使用print而直接输出二进制字符串
  • 使用setup.py安装python包和卸载python包的方法
  • Python中实现json字符串和dict类型的互转
  • 不小心把linux自带的python卸载了,导致安装一个依赖原python的软件不能安装,请问该怎么办?
  • python异常信息堆栈输出到日志文件
  • python读取csv文件示例(python操作csv)
  • python下用os.execl执行centos下的系统时间同步命令ntpdate
  • 新手该如何学python怎么学好python?


  • 站内导航:


    特别声明:169IT网站部分信息来自互联网,如果侵犯您的权利,请及时告知,本站将立即删除!

    ©2012-2021,,E-mail:www_#163.com(请将#改为@)

    浙ICP备11055608号-3