当前位置: 技术问答>linux和unix
初学makefile,帮忙看看这个makefile实例
来源: 互联网 发布时间:2016-05-09
本文导语: 初学makefile,下面是一个makefile: CC=gcc CFLAGS= -Iinclude -Wall -g -DDEBUG LDFLAGS=-L./lib -Wl,-rpath=./lib -Wl,-rpath=/usr/local/lib myapp: main.o test1.o test2.o test3.o test4.o test5.o $(CC) -o $@ $(LDFLAGS) $^ -ldl clean: rm -rf *.o myapp 请...
初学makefile,下面是一个makefile:
CC=gcc
CFLAGS= -Iinclude -Wall -g -DDEBUG
LDFLAGS=-L./lib -Wl,-rpath=./lib -Wl,-rpath=/usr/local/lib
myapp: main.o test1.o test2.o test3.o test4.o test5.o
$(CC) -o $@ $(LDFLAGS) $^ -ldl
clean:
rm -rf *.o myapp
请问:
1、“-Iinclude -Wall -g -DDEBUG”这句具体代表什么意思(能否帮忙解释一下各个参数含义)?
变量CFLAGS在后面也没用到,这样赋值有什么用?
2、同样的,“-L./lib -Wl,-rpath=./lib -Wl,-rpath=/usr/local/lib”这句具体代表什么意思(能否帮忙解释一下各个参数含义)?
3、“-ldl”是什么意思?
4、“rm -rf *.o myapp”是指删除临时生成的所有.o文件吧?那么为何后面还加了myapp文件(难道要把生成的目标文件myapp也给删了)?
参数-rf是什么意思?
5、“rm”是make的内置命令吗?make的全部内置命令哪里可以查看?
6、上面makefile里为何依赖文件只写了.o文件,而没有.c文件?
CC=gcc
CFLAGS= -Iinclude -Wall -g -DDEBUG
LDFLAGS=-L./lib -Wl,-rpath=./lib -Wl,-rpath=/usr/local/lib
myapp: main.o test1.o test2.o test3.o test4.o test5.o
$(CC) -o $@ $(LDFLAGS) $^ -ldl
clean:
rm -rf *.o myapp
请问:
1、“-Iinclude -Wall -g -DDEBUG”这句具体代表什么意思(能否帮忙解释一下各个参数含义)?
变量CFLAGS在后面也没用到,这样赋值有什么用?
2、同样的,“-L./lib -Wl,-rpath=./lib -Wl,-rpath=/usr/local/lib”这句具体代表什么意思(能否帮忙解释一下各个参数含义)?
3、“-ldl”是什么意思?
4、“rm -rf *.o myapp”是指删除临时生成的所有.o文件吧?那么为何后面还加了myapp文件(难道要把生成的目标文件myapp也给删了)?
参数-rf是什么意思?
5、“rm”是make的内置命令吗?make的全部内置命令哪里可以查看?
6、上面makefile里为何依赖文件只写了.o文件,而没有.c文件?
|
1、“-Iinclude -Wall -g -DDEBUG”这句具体代表什么意思(能否帮忙解释一下各个参数含义)?
这些都是gcc的参数,I后面跟的是搜索路径,-Wall是所有错误跟警靠在编译的时候都打出来,-g是生成带符号表的可执行程序,以供你用gdb去调试, -D是定义一个宏,相当于你程序里面的一个编译开关
2、LDFLAGS指示了一些链接时的设定,-L反指定链接库的位置, -rpath是指定运行时的动态库位置,
3、-ldl则指示装配程序ld需要装载dl函数库。
4、是的。-rf是rm的参数意为强制剃归删除,具体你可以man rm
5、rm是linux系统命令,只要你使用的shell可以执行该命令,make中就可以使用该命令
6、根据隐晦规则,make会自动根据你的.o文件来推导相应的.c文件并执行相应的命令来生成.o文件
这些都是gcc的参数,I后面跟的是搜索路径,-Wall是所有错误跟警靠在编译的时候都打出来,-g是生成带符号表的可执行程序,以供你用gdb去调试, -D是定义一个宏,相当于你程序里面的一个编译开关
2、LDFLAGS指示了一些链接时的设定,-L反指定链接库的位置, -rpath是指定运行时的动态库位置,
3、-ldl则指示装配程序ld需要装载dl函数库。
4、是的。-rf是rm的参数意为强制剃归删除,具体你可以man rm
5、rm是linux系统命令,只要你使用的shell可以执行该命令,make中就可以使用该命令
6、根据隐晦规则,make会自动根据你的.o文件来推导相应的.c文件并执行相应的命令来生成.o文件
|
对不起,刚才6楼弄错了。
CFLAGS好像是内置的。
http://bbs.chinaunix.net/viewthread.php?tid=408225
隐含规则
————
在我们使用Makefile时,有一些我们会经常使用,而且使用频率非常高的东西,比如,我们编译C/C++的源程序为中间目标文件(Unix下是[.o]文件,Windows下是[.obj]文件)。本章讲述的就是一些在Makefile中的“隐含的”,早先约定了的,不需要我们再写出来的规则。
“隐含规则”也就是一种惯例,make会按照这种“惯例”心照不喧地来运行,那怕我们的Makefile中没有书写这样的规则。例如,把[.c]文件编译成[.o]文件这一规则,你根本就不用写出来,make会自动推导出这种规则,并生成我们需要的[.o]文件。
“隐含规则”会使用一些我们系统变量,我们可以改变这些系统变量的值来定制隐含规则的运行时的参数。如系统变量“CFLAGS”可以控制编译时的编译器参数。
我们还可以通过“模式规则”的方式写下自己的隐含规则。用“后缀规则”来定义隐含规则会有许多的限制。使用“模式规则”会更回得智能和清楚,但“后缀规则”可以用来保证我们Makefile的兼容性。
我们了解了“隐含规则”,可以让其为我们更好的服务,也会让我们知道一些“约定俗成”了的东西,而不至于使得我们在运行Makefile时出现一些我们觉得莫名其妙的东西。当然,任何事物都是矛盾的,水能载舟,亦可覆舟,所以,有时候“隐含规则”也会给我们造成不小的麻烦。只有了解了它,我们才能更好地使用它。
一、使用隐含规则
如果要使用隐含规则生成你需要的目标,你所需要做的就是不要写出这个目标的规则。那么,make会试图去自动推导产生这个目标的规则和命令,如果make可以自动推导生成这个目标的规则和命令,那么这个行为就是隐含规则的自动推导。当然,隐含规则是make事先约定好的一些东西。例如,我们有下面的一个Makefile:
foo : foo.o bar.o
cc –o foo foo.o bar.o $(CFLAGS) $(LDFLAGS)
我们可以注意到,这个Makefile中并没有写下如何生成foo.o和bar.o这两目标的规则和命令。因为make的“隐含规则”功能会自动为我们自动去推导这两个目标的依赖目标和生成命令。
make会在自己的“隐含规则”库中寻找可以用的规则,如果找到,那么就会使用。如果找不到,那么就会报错。在上面的那个例子中,make调用的隐含规则是,把[.o]的目标的依赖文件置成[.c],并使用C的编译命令“cc –c $(CFLAGS) [.c]”来生成[.o]的目标。也就是说,我们完全没有必要写下下面的两条规则:
foo.o : foo.c
cc –c foo.c $(CFLAGS)
bar.o : bar.c
cc –c bar.c $(CFLAGS)
因为,这已经是“约定”好了的事了,make和我们约定好了用C编译器“cc”生成[.o]文件的规则,这就是隐含规则。
当然,如果我们为[.o]文件书写了自己的规则,那么make就不会自动推导并调用隐含规则,它会按照我们写好的规则忠实地执行。
还有,在make的“隐含规则库”中,每一条隐含规则都在库中有其顺序,越靠前的则是越被经常使用的,所以,这会导致我们有些时候即使我们显示地指定了目标依赖,make也不会管。如下面这条规则(没有命令):
foo.o : foo.p
依赖文件“foo.p”(Pascal程序的源文件)有可能变得没有意义。如果目录下存在了“foo.c”文件,那么我们的隐含规则一样会生效,并会通过“foo.c”调用C的编译器生成foo.o文件。因为,在隐含规则中,Pascal的规则出现在C的规则之后,所以,make找到可以生成foo.o的C的规则就不再寻找下一条规则了。如果你确实不希望任何隐含规则推导,那么,你就不要只写出“依赖规则”,而不写命令。
二、隐含规则一览
这里我们将讲述所有预先设置(也就是make内建)的隐含规则,如果我们不明确地写下规则,那么,make就会在这些规则中寻找所需要规则和命令。当然,我们也可以使用make的参数“-r”或“--no-builtin-rules”选项来取消所有的预设置的隐含规则。
当然,即使是我们指定了“-r”参数,某些隐含规则还是会生效,因为有许多的隐含规则都是使用了“后缀规则”来定义的,所以,只要隐含规则中有“后缀列表”(也就一系统定义在目标.SUFFIXES的依赖目标),那么隐含规则就会生效。默认的后缀列表是:.out, .a, .ln, .o, .c, .cc, .C, .p, .f, .F, .r, .y, .l, .s, .S, .mod, .sym, .def, .h, .info, .dvi, .tex, .texinfo, .texi, .txinfo, .w, .ch .web, .sh, .elc, .el。具体的细节,我们会在后面讲述。
还是先来看一看常用的隐含规则吧。
1、编译C程序的隐含规则。
“;.o”的目标的依赖目标会自动推导为“;.c”,并且其生成命令是“$(CC) –c $(CPPFLAGS) $(CFLAGS)”
2、编译C++程序的隐含规则。
“;.o”的目标的依赖目标会自动推导为“;.cc”或是“;.C”,并且其生成命令是“$(CXX) –c $(CPPFLAGS) $(CFLAGS)”。(建议使用“.cc”作为C++源文件的后缀,而不是“.C”)
3、编译Pascal程序的隐含规则。
“;.o”的目标的依赖目标会自动推导为“;.p”,并且其生成命令是“$(PC) –c $(PFLAGS)”。
4、编译Fortran/Ratfor程序的隐含规则。
“;.o”的目标的依赖目标会自动推导为“;.r”或“;.F”或“;.f”,并且其生成命令是:
“.f” “$(FC) –c $(FFLAGS)”
“.F” “$(FC) –c $(FFLAGS) $(CPPFLAGS)”
“.f” “$(FC) –c $(FFLAGS) $(RFLAGS)”
5、预处理Fortran/Ratfor程序的隐含规则。
“;.f”的目标的依赖目标会自动推导为“;.r”或“;.F”。这个规则只是转换Ratfor或有预处理的Fortran程序到一个标准的Fortran程序。其使用的命令是:
“.F” “$(FC) –F $(CPPFLAGS) $(FFLAGS)”
“.r” “$(FC) –F $(FFLAGS) $(RFLAGS)”
6、编译Modula-2程序的隐含规则。
“;.sym”的目标的依赖目标会自动推导为“;.def”,并且其生成命令是:“$(M2C) $(M2FLAGS) $(DEFFLAGS)”。“;” 的目标的依赖目标会自动推导为“;.mod”,并且其生成命令是:“$(M2C) $(M2FLAGS) $(MODFLAGS)”。
7、汇编和汇编预处理的隐含规则。
“;.o” 的目标的依赖目标会自动推导为“;.s”,默认使用编译品“as”,并且其生成命令是:“$(AS) $(ASFLAGS)”。“;.s” 的目标的依赖目标会自动推导为“;.S”,默认使用C预编译器“cpp”,并且其生成命令是:“$(AS) $(ASFLAGS)”。
8、链接Object文件的隐含规则。
“;”目标依赖于“;.o”,通过运行C的编译器来运行链接程序生成(一般是“ld”),其生成命令是:“$(CC) $(LDFLAGS) ;.o $(LOADLIBES) $(LDLIBS)”。这个规则对于只有一个源文件的工程有效,同时也对多个Object文件(由不同的源文件生成)的也有效。例如如下规则:
x : y.o z.o
并且“x.c”、“y.c”和“z.c”都存在时,隐含规则将执行如下命令:
cc -c x.c -o x.o
cc -c y.c -o y.o
cc -c z.c -o z.o
cc x.o y.o z.o -o x
rm -f x.o
rm -f y.o
rm -f z.o
如果没有一个源文件(如上例中的x.c)和你的目标名字(如上例中的x)相关联,那么,你最好写出自己的生成规则,不然,隐含规则会报错的。
9、Yacc C程序时的隐含规则。
“;.c”的依赖文件被自动推导为“n.y”(Yacc生成的文件),其生成命令是:“$(YACC) $(YFALGS)”。(“Yacc”是一个语法分析器,关于其细节请查看相关资料)
10、Lex C程序时的隐含规则。
“;.c”的依赖文件被自动推导为“n.l”(Lex生成的文件),其生成命令是:“$(LEX) $(LFALGS)”。(关于“Lex”的细节请查看相关资料)
11、Lex Ratfor程序时的隐含规则。
“;.r”的依赖文件被自动推导为“n.l”(Lex生成的文件),其生成命令是:“$(LEX) $(LFALGS)”。
12、从C程序、Yacc文件或Lex文件创建Lint库的隐含规则。
“;.ln” (lint生成的文件)的依赖文件被自动推导为“n.c”,其生成命令是:“$(LINT) $(LINTFALGS) $(CPPFLAGS) -i”。对于“;.y”和“;.l”也是同样的规则。
CFLAGS好像是内置的。
http://bbs.chinaunix.net/viewthread.php?tid=408225
隐含规则
————
在我们使用Makefile时,有一些我们会经常使用,而且使用频率非常高的东西,比如,我们编译C/C++的源程序为中间目标文件(Unix下是[.o]文件,Windows下是[.obj]文件)。本章讲述的就是一些在Makefile中的“隐含的”,早先约定了的,不需要我们再写出来的规则。
“隐含规则”也就是一种惯例,make会按照这种“惯例”心照不喧地来运行,那怕我们的Makefile中没有书写这样的规则。例如,把[.c]文件编译成[.o]文件这一规则,你根本就不用写出来,make会自动推导出这种规则,并生成我们需要的[.o]文件。
“隐含规则”会使用一些我们系统变量,我们可以改变这些系统变量的值来定制隐含规则的运行时的参数。如系统变量“CFLAGS”可以控制编译时的编译器参数。
我们还可以通过“模式规则”的方式写下自己的隐含规则。用“后缀规则”来定义隐含规则会有许多的限制。使用“模式规则”会更回得智能和清楚,但“后缀规则”可以用来保证我们Makefile的兼容性。
我们了解了“隐含规则”,可以让其为我们更好的服务,也会让我们知道一些“约定俗成”了的东西,而不至于使得我们在运行Makefile时出现一些我们觉得莫名其妙的东西。当然,任何事物都是矛盾的,水能载舟,亦可覆舟,所以,有时候“隐含规则”也会给我们造成不小的麻烦。只有了解了它,我们才能更好地使用它。
一、使用隐含规则
如果要使用隐含规则生成你需要的目标,你所需要做的就是不要写出这个目标的规则。那么,make会试图去自动推导产生这个目标的规则和命令,如果make可以自动推导生成这个目标的规则和命令,那么这个行为就是隐含规则的自动推导。当然,隐含规则是make事先约定好的一些东西。例如,我们有下面的一个Makefile:
foo : foo.o bar.o
cc –o foo foo.o bar.o $(CFLAGS) $(LDFLAGS)
我们可以注意到,这个Makefile中并没有写下如何生成foo.o和bar.o这两目标的规则和命令。因为make的“隐含规则”功能会自动为我们自动去推导这两个目标的依赖目标和生成命令。
make会在自己的“隐含规则”库中寻找可以用的规则,如果找到,那么就会使用。如果找不到,那么就会报错。在上面的那个例子中,make调用的隐含规则是,把[.o]的目标的依赖文件置成[.c],并使用C的编译命令“cc –c $(CFLAGS) [.c]”来生成[.o]的目标。也就是说,我们完全没有必要写下下面的两条规则:
foo.o : foo.c
cc –c foo.c $(CFLAGS)
bar.o : bar.c
cc –c bar.c $(CFLAGS)
因为,这已经是“约定”好了的事了,make和我们约定好了用C编译器“cc”生成[.o]文件的规则,这就是隐含规则。
当然,如果我们为[.o]文件书写了自己的规则,那么make就不会自动推导并调用隐含规则,它会按照我们写好的规则忠实地执行。
还有,在make的“隐含规则库”中,每一条隐含规则都在库中有其顺序,越靠前的则是越被经常使用的,所以,这会导致我们有些时候即使我们显示地指定了目标依赖,make也不会管。如下面这条规则(没有命令):
foo.o : foo.p
依赖文件“foo.p”(Pascal程序的源文件)有可能变得没有意义。如果目录下存在了“foo.c”文件,那么我们的隐含规则一样会生效,并会通过“foo.c”调用C的编译器生成foo.o文件。因为,在隐含规则中,Pascal的规则出现在C的规则之后,所以,make找到可以生成foo.o的C的规则就不再寻找下一条规则了。如果你确实不希望任何隐含规则推导,那么,你就不要只写出“依赖规则”,而不写命令。
二、隐含规则一览
这里我们将讲述所有预先设置(也就是make内建)的隐含规则,如果我们不明确地写下规则,那么,make就会在这些规则中寻找所需要规则和命令。当然,我们也可以使用make的参数“-r”或“--no-builtin-rules”选项来取消所有的预设置的隐含规则。
当然,即使是我们指定了“-r”参数,某些隐含规则还是会生效,因为有许多的隐含规则都是使用了“后缀规则”来定义的,所以,只要隐含规则中有“后缀列表”(也就一系统定义在目标.SUFFIXES的依赖目标),那么隐含规则就会生效。默认的后缀列表是:.out, .a, .ln, .o, .c, .cc, .C, .p, .f, .F, .r, .y, .l, .s, .S, .mod, .sym, .def, .h, .info, .dvi, .tex, .texinfo, .texi, .txinfo, .w, .ch .web, .sh, .elc, .el。具体的细节,我们会在后面讲述。
还是先来看一看常用的隐含规则吧。
1、编译C程序的隐含规则。
“;.o”的目标的依赖目标会自动推导为“;.c”,并且其生成命令是“$(CC) –c $(CPPFLAGS) $(CFLAGS)”
2、编译C++程序的隐含规则。
“;.o”的目标的依赖目标会自动推导为“;.cc”或是“;.C”,并且其生成命令是“$(CXX) –c $(CPPFLAGS) $(CFLAGS)”。(建议使用“.cc”作为C++源文件的后缀,而不是“.C”)
3、编译Pascal程序的隐含规则。
“;.o”的目标的依赖目标会自动推导为“;.p”,并且其生成命令是“$(PC) –c $(PFLAGS)”。
4、编译Fortran/Ratfor程序的隐含规则。
“;.o”的目标的依赖目标会自动推导为“;.r”或“;.F”或“;.f”,并且其生成命令是:
“.f” “$(FC) –c $(FFLAGS)”
“.F” “$(FC) –c $(FFLAGS) $(CPPFLAGS)”
“.f” “$(FC) –c $(FFLAGS) $(RFLAGS)”
5、预处理Fortran/Ratfor程序的隐含规则。
“;.f”的目标的依赖目标会自动推导为“;.r”或“;.F”。这个规则只是转换Ratfor或有预处理的Fortran程序到一个标准的Fortran程序。其使用的命令是:
“.F” “$(FC) –F $(CPPFLAGS) $(FFLAGS)”
“.r” “$(FC) –F $(FFLAGS) $(RFLAGS)”
6、编译Modula-2程序的隐含规则。
“;.sym”的目标的依赖目标会自动推导为“;.def”,并且其生成命令是:“$(M2C) $(M2FLAGS) $(DEFFLAGS)”。“;” 的目标的依赖目标会自动推导为“;.mod”,并且其生成命令是:“$(M2C) $(M2FLAGS) $(MODFLAGS)”。
7、汇编和汇编预处理的隐含规则。
“;.o” 的目标的依赖目标会自动推导为“;.s”,默认使用编译品“as”,并且其生成命令是:“$(AS) $(ASFLAGS)”。“;.s” 的目标的依赖目标会自动推导为“;.S”,默认使用C预编译器“cpp”,并且其生成命令是:“$(AS) $(ASFLAGS)”。
8、链接Object文件的隐含规则。
“;”目标依赖于“;.o”,通过运行C的编译器来运行链接程序生成(一般是“ld”),其生成命令是:“$(CC) $(LDFLAGS) ;.o $(LOADLIBES) $(LDLIBS)”。这个规则对于只有一个源文件的工程有效,同时也对多个Object文件(由不同的源文件生成)的也有效。例如如下规则:
x : y.o z.o
并且“x.c”、“y.c”和“z.c”都存在时,隐含规则将执行如下命令:
cc -c x.c -o x.o
cc -c y.c -o y.o
cc -c z.c -o z.o
cc x.o y.o z.o -o x
rm -f x.o
rm -f y.o
rm -f z.o
如果没有一个源文件(如上例中的x.c)和你的目标名字(如上例中的x)相关联,那么,你最好写出自己的生成规则,不然,隐含规则会报错的。
9、Yacc C程序时的隐含规则。
“;.c”的依赖文件被自动推导为“n.y”(Yacc生成的文件),其生成命令是:“$(YACC) $(YFALGS)”。(“Yacc”是一个语法分析器,关于其细节请查看相关资料)
10、Lex C程序时的隐含规则。
“;.c”的依赖文件被自动推导为“n.l”(Lex生成的文件),其生成命令是:“$(LEX) $(LFALGS)”。(关于“Lex”的细节请查看相关资料)
11、Lex Ratfor程序时的隐含规则。
“;.r”的依赖文件被自动推导为“n.l”(Lex生成的文件),其生成命令是:“$(LEX) $(LFALGS)”。
12、从C程序、Yacc文件或Lex文件创建Lint库的隐含规则。
“;.ln” (lint生成的文件)的依赖文件被自动推导为“n.c”,其生成命令是:“$(LINT) $(LINTFALGS) $(CPPFLAGS) -i”。对于“;.y”和“;.l”也是同样的规则。
|
|
.是指当前目录
./lib指的是当前目录下的lib目录
|
1.
这个问题问的很好。如果在后面的规则里没有明确的引用,定义了也没用。不是内置的。
由可能是原作者笔误,忘了用了。
2.
CFLAGS、LDFLAGS的名字,从技术上来说随便定义成什么都可以。但是最好就用这样约定俗成的大家都比较习惯的名字,可读性很好
3.
这个要看手册了,手册上怎么写的就怎么用
|
-Wl,XXXX
是指讲逗号后面的XXXX作为传给链接器(linker)的参数,如果XXXX中含有逗号,则以逗号分隔成多个参数传给链接器。
-rpath=XXXX
是告诉链接器在进行符号解析搜索依赖的库时,会优先在XXXX路径中搜索。并且此XXXX路径会写到ELF文件的文件头中,装载器(loader)在load依赖的库时会优先从此路径中搜索。
是指讲逗号后面的XXXX作为传给链接器(linker)的参数,如果XXXX中含有逗号,则以逗号分隔成多个参数传给链接器。
-rpath=XXXX
是告诉链接器在进行符号解析搜索依赖的库时,会优先在XXXX路径中搜索。并且此XXXX路径会写到ELF文件的文件头中,装载器(loader)在load依赖的库时会优先从此路径中搜索。
|
这个回答是不正确的,下面不用引用一样可以找到库!
|
zhichi
|
不错 虽然是最简单的makefile
|
mark~