LRU(Least Recently Used)近期最少使用算法是内存管理的一种页面置换算法。LRU是为虚拟页式存储管理服务的。关于操作系统的内存管理,如何节省利用容量不大的内存为最多的进程提供资源,一直是研究的重要方向。而内存的虚拟存储管理,是现在最通用,最成功的方式—— 在内存有限的情况下,扩展一部分外存作为虚拟内存,真正的内存只存储当前运行时所用得到信息。这无疑极大地扩充了内存的功能,极大地提高了计算机的并发度。虚拟页式存储管理,则是将进程所需空间划分为多个页面,内存中只存放当前所需页面,其余页面放入外存的管理方式。然而,有利就有弊,虚拟页式存储管理减少了进程所需的内存空间,却也带来了运行时间变长这一缺点:进程运行过程中,不可避免地要把在外存中存放的一些信息和内存中已有的进行交换,由于外存的低速,这一步骤所花费的时间不可忽略。因而,采取尽量好的算法以减少读取外存的次数,也是相当有意义的事情。
在设计到数据缓存的项目中,经常需要实现基于LRU的数据缓存。目前常用的方法有两种:
1)每一条缓存数据附加一个时间戳,通过对时间的对比来清除当前最久未使用的的数据项。
2)通过栈来缓存数据项的标识,不断将最近使用过的数据项标识移动到栈顶,通过不断移除栈底标识对应的数据项来实现LRU。
目前用的最多的还是第二种方法。
实现的代码片段
数据结构定义
/// Typedef for URL/Entry pair
typedef std::pair< std::string, Entry > EntryPair;
/// Typedef for Cache list
typedef std::list< EntryPair > CacheList;
/// Typedef for URL-indexed map into the CacheList
typedef boost::unordered_map< std::string, CacheList::iterator > CacheMap;
/// Cache LRU list
CacheList mCacheList;
/// Cache map into the list
CacheMap mCacheMap;
插入算法实现代码片段:
// create new entry
Entry iEntry( ... );
// push it to the front;
mCacheList.push_front( std::make_pair( aURL, iEntry ) );
// add it to the cache map
mCacheMap[ aURL ] = mCacheList.begin();
// increase count of entries
mEntries++;
// check if it's time to remove the last element
if ( mEntries > mMaxEntries )
{
// erease from the map the last cache list element
mCacheMap.erase( mCacheList.back().first );
// erase it from the list
mCacheList.pop_back();
// decrease count
mEntries--;
}
以上实现方法的一些频繁操作时间复杂度均为O(1).