当前位置:  互联网>综合
本页文章导读:
    ▪ConcurrentLinkedQueue的实现原理分析      1. 引言 在并发编程中我们有时候需要使用线程安全的队列。如果我们要实现一个线程安全的队列有两种实现方式:一种是使用阻塞算法,另一种是使用非阻塞算法。使用阻塞算法的队列可以.........
    ▪linux 使用 ip route , ip rule , iptables 配置策略路由      公司内网要求192.168.0.100以内的使用 10.0.0.1 网关上网(电信),其他IP使用 20.0.0.1 (网通)上网   首先要在网关服务器上添加一个默认路由,当然这个指向是绝大多数的IP的出口网关。  .........
    ▪Linux Route 的一般用法       路由配置 route route : 显示或配置本机路由信息   一个路由表配置主要的配置信息是: 配置项 意义 target 目的Ip主机地址或ip网络地址 gw 下一跳地址 dev 下一跳的网络接口.........

[1]ConcurrentLinkedQueue的实现原理分析
    来源: 互联网  发布时间: 2013-10-21
1. 引言

在并发编程中我们有时候需要使用线程安全的队列。如果我们要实现一个线程安全的队列有两种实现方式:一种是使用阻塞算法,另一种是使用非阻塞算法。使用阻塞算法的队列可以用一个锁(入队和出队用同一把锁)或两个锁(入队和出队用不同的锁)等方式来实现,而非阻塞的实现方式则可以使用循环CAS的方式来实现,本文让我们一起来研究下Doug Lea是如何使用非阻塞的方式来实现线程安全队列ConcurrentLinkedQueue的,相信从大师身上我们能学到不少并发编程的技巧。

2. ConcurrentLinkedQueue的介绍

ConcurrentLinkedQueue是一个基于链接节点的无界线程安全队列,它采用先进先出的规则对节点进行排序,当我们添加一个元素的时候,它会添加到队列的尾部,当我们获取一个元素时,它会返回队列头部的元素。它采用了“wait-free”算法来实现,该算法在Michael & Scott算法上进行了一些修改, Michael & Scott算法的详细信息可以参见参考资料一。

3. ConcurrentLinkedQueue的结构

我们通过ConcurrentLinkedQueue的类图来分析一下它的结构。

(图1)

ConcurrentLinkedQueue由head节点和tair节点组成,每个节点(Node)由节点元素(item)和指向下一个节点的引用(next)组成,节点与节点之间就是通过这个next关联起来,从而组成一张链表结构的队列。默认情况下head节点存储的元素为空,tair节点等于head节点。

private transient volatile Node<E> tail = head;
4. 入队列

入队列就是将入队节点添加到队列的尾部。为了方便理解入队时队列的变化,以及head节点和tair节点的变化,每添加一个节点我就做了一个队列的快照图。

(图二)

  • 第一步添加元素1。队列更新head节点的next节点为元素1节点。又因为tail节点默认情况下等于head节点,所以它们的next节点都指向元素1节点。
  • 第二步添加元素2。队列首先设置元素1节点的next节点为元素2节点,然后更新tail节点指向元素2节点。
  • 第三步添加元素3,设置tail节点的next节点为元素3节点。
  • 第四步添加元素4,设置元素3的next节点为元素4节点,然后将tail节点指向元素4节点。

通过debug入队过程并观察head节点和tail节点的变化,发现入队主要做两件事情,第一是将入队节点设置成当前队列尾节点的下一个节点。第二是更新tail节点,如果tail节点的next节点不为空,则将入队节点设置成tail节点,如果tail节点的next节点为空,则将入队节点设置成tail的next节点,所以tail节点不总是尾节点,理解这一点对于我们研究源码会非常有帮助。

上面的分析让我们从单线程入队的角度来理解入队过程,但是多个线程同时进行入队情况就变得更加复杂,因为可能会出现其他线程插队的情况。如果有一个线程正在入队,那么它必须先获取尾节点,然后设置尾节点的下一个节点为入队节点,但这时可能有另外一个线程插队了,那么队列的尾节点就会发生变化,这时当前线程要暂停入队操作,然后重新获取尾节点。让我们再通过源码来详细分析下它是如何使用CAS算法来入队的。

public boolean offer(E e) {
    if (e == null) throw new NullPointerException();
    //入队前,创建一个入队节点
    Node<E> n = new Node<E>(e);
    retry:
    //死循环,入队不成功反复入队。
    for (;;) {
        //创建一个指向tail节点的引用
        Node<E> t = tail;
        //p用来表示队列的尾节点,默认情况下等于tail节点。
        Node<E> p = t;
        for (int hops = 0; ; hops++) {
        //获得p节点的下一个节点。
            Node<E> next = succ(p);
        //next节点不为空,说明p不是尾节点,需要更新p后在将它指向next节点
            if (next != null) {
               //循环了两次及其以上,并且当前节点还是不等于尾节点
                if (hops > HOPS && t != tail)
                    continue retry; 
                p = next;
            } 
            //如果p是尾节点,则设置p节点的next节点为入队节点。
            else if (p.casNext(null, n)) {
              //如果tail节点有大于等于1个next节点,则将入队节点设置成tair节点,更新失败了也
没关系,因为失败了表示有其他线程成功更新了tair节点。
                if (hops >= HOPS)
                    casTail(t, n); // 更新tail节点,允许失败
                return true;  
            } 
           // p有next节点,表示p的next节点是尾节点,则重新设置p节点
            else {
                p = succ(p);
            }
        }
    }
}

从源代码角度来看整个入队过程主要做二件事情。第一是定位出尾节点,第二是使用CAS算法能将入队节点设置成尾节点的next节点,如不成功则重试。

第一步定位尾节点。tail节点并不总是尾节点,所以每次入队都必须先通过tail节点来找到尾节点,尾节点可能就是tail节点,也可能是tail节点的next节点。代码中循环体中的第一个if就是判断tail是否有next节点,有则表示next节点可能是尾节点。获取tail节点的next节点需要注意的是p节点等于p的next节点的情况,只有一种可能就是p节点和p的next节点都等于空,表示这个队列刚初始化,正准备添加第一次节点,所以需要返回head节点。获取p节点的next节点代码如下

final Node<E> succ(Node<E> p) {
         Node<E> next = p.getNext();
         return (p == next) ? head : next;
     }

第二步设置入队节点为尾节点。p.casNext(null, n)方法用于将入队节点设置为当前队列尾节点的next节点,p如果是null表示p是当前队列的尾节点,如果不为null表示有其他线程更新了尾节点,则需要重新获取当前队列的尾节点。

hops的设计意图。上面分析过对于先进先出的队列入队所要做的事情就是将入队节点设置成尾节点,doug lea写的代码和逻辑还是稍微有点复杂。那么我用以下方式来实现行不行?

public boolean offer(E e) {
        if (e == null)
            throw new NullPointerException();
        Node<E> n = new Node<E>(e);
        for (;;) {
            Node<E> t = tail;
            if (t.casNext(null, n) && casTail(t, n)) {
                return true;
            }
        }
    }

让tail节点永远作为队列的尾节点,这样实现代码量非常少,而且逻辑非常清楚和易懂。但是这么做有个缺点就是每次都需要使用循环CAS更新tail节点。如果能减少CAS更新tail节点的次数,就能提高入队的效率,所以doug lea使用hops变量来控制并减少tail节点的更新频率,并不是每次节点入队后都将 tail节点更新成尾节点,而是当 tail节点和尾节点的距离大于等于常量HOPS的值(默认等于1)时才更新tail节点,tail和尾节点的距离越长使用CAS更新tail节点的次数就会越少,但是距离越长带来的负面效果就是每次入队时定位尾节点的时间就越长,因为循环体需要多循环一次来定位出尾节点,但是这样仍然能提高入队的效率,因为从本质上来看它通过增加对volatile变量的读操作来减少了对volatile变量的写操作,而对volatile变量的写操作开销要远远大于读操作,所以入队效率会有所提升。

private static final int HOPS = 1;

还有一点需要注意的是入队方法永远返回true,所以不要通过返回值判断入队是否成功。

5. 出队列

出队列的就是从队列里返回一个节点元素,并清空该节点对元素的引用。让我们通过每个节点出队的快照来观察下head节点的变化。

从上图可知,并不是每次出队时都更新head节点,当head节点里有元素时,直接弹出head节点里的元素,而不会更新head节点。只有当head节点里没有元素时,出队操作才会更新head节点。这种做法也是通过hops变量来减少使用CAS更新head节点的消耗,从而提高出队效率。让我们再通过源码来深入分析下出队过程。

public E poll() {
    Node<E> h = head;
   // p表示头节点,需要出队的节点
    Node<E> p = h;
    for (int hops = 0;; hops++) {
        // 获取p节点的元素
        E item = p.getItem();
        // 如果p节点的元素不为空,使用CAS设置p节点引用的元素为null,如果成功则返回p节点的元素。
        if (item != null && p.casItem(item, null)) {
            if (hops >= HOPS) {
                //将p节点下一个节点设置成head节点
                Node<E> q = p.getNext();
                updateHead(h, (q != null) ? q       
    
[2]linux 使用 ip route , ip rule , iptables 配置策略路由
    来源: 互联网  发布时间: 2013-10-21
公司内网要求192.168.0.100以内的使用 10.0.0.1 网关上网(电信),其他IP使用 20.0.0.1 (网通)上网
 
首先要在网关服务器上添加一个默认路由,当然这个指向是绝大多数的IP的出口网关。
 
ip route add default gw 20.0.0.1
 
之后通过 ip route 添加一个路由表
 
ip route add table 3 via 10.0.0.1 dev ethX (ethx是10.0.0.1所在的网卡,3 是路由表的编号)
 
之后添加 ip  rule 规则
 
ip rule add fwmark 3  table 3 (fwmark 3是标记,table 3 是路由表3 上边。 意思就是凡事标记了 3 的数据使用table3 路由表)
 
之后使用iptables给相应的数据打上标记
 
iptables -A PREROUTING -t mangle -i eth0 -s 192.168.0.1 -192.168.0.100 -j MARK --set-mark 3
 
因为mangle的处理是优先于 nat 和fiter表的,所以相依数据包到达之后先打上标记,之后在通过ip rule规则,对应的数据包使用相应的路由表进行路由,最后读取路由表信息,将数据包送出网关。

作者:Trassion 发表于2013-4-19 15:55:10 原文链接
阅读:0 评论:0 查看评论

    
[3]Linux Route 的一般用法
    来源: 互联网  发布时间: 2013-10-21

路由配置 route

route : 显示或配置本机路由信息

 

一个路由表配置主要的配置信息是:

配置项

意义

target

目的Ip主机地址或ip网络地址

gw

下一跳地址

dev

下一跳的网络接口

如果从本机需要发出去一个ip报,或转发一个ip数据报,Linux会先在系统维护的路由信息表中查找有没有目的ip地址和路由表中Target配置相符合的配置,如果有,则把这个ip报发送到配置中Gw所制定的地址 .如果没有找到符合的路由配置,则把此数据报发送到缺省网关地址。

 

使用方法:

route    [options]

使用实例:

a) 显示路由信息 route –n

 

 

b) 设置缺省网关配置

route add  default  gw  192.168.9.1  dev  eth1

c) 删除缺省网关配置

route del  default  gw  192.168.9.1  dev eth1

 

 

d) 增加到目标主机的路由:

route add –host 192.168.9.8  gw 192.168.9.1  dev eth1

e) 增加到目标网络的路由:

route add –host 192.168.9.8  netmask  255.255.255.0  gw  192.168.9.1  dev eth1

 

f) 删除到目标主机的路由:

route del –host 192.168.9.8  gw 192.168.9.1   dev  eth1

g) 删除到目标网络的路由:

route del –host 192.168.9.8  netmask 255.255.255.0   gw  192.168.9.1  dev  eth1


作者:Trassion 发表于2013-4-19 17:16:14 原文链接
阅读:0 评论:0 查看评论

    
最新技术文章:
▪用户及权限基础 2---- Linux权限    ▪用户及权限基础 3---- Linux扩展权限    ▪git 简明教程(1) --创建及提交
▪背包 代码    ▪json对象的封装与解析    ▪01背包,完全背包,多重背包 ,模板代码
▪apache安装详解    ▪HDU 4668 Finding string (解析字符串 + KMP)    ▪《TCP-IP详解 卷1:协议》学习笔记(二)
▪《TCP-IP详解 卷1:协议》学习笔记(持续更新...    ▪windows下使用swig    ▪gensim试用
▪Linux Shell脚本编程--nc命令使用详解    ▪solr对跨服务器表联合查询的配置    ▪递归和非递归实现链表反转
▪Linux磁盘及文件系统管理 1---- 磁盘基本概念    ▪Cholesky Decomposition    ▪HTTP协议学习
▪用C语言写CGI入门教程    ▪用hdfs存储海量的视频数据的设计思路    ▪java多线程下载的实现示例
▪【原创】eAccelerator 一个锁bug问题跟踪    ▪hadoop学习之ZooKeeper    ▪使用cuzysdk web API 实现购物导航类网站
▪二维数组中的最长递减子序列    ▪内嵌W5100的网络模块WIZ812MJ--数据手册    ▪xss 跨站脚本攻击
▪RobotFramework+Selenium2环境搭建与入门实例    ▪什么是API    ▪用PersonalRank实现基于图的推荐算法
▪Logtype    ▪关于端口号你知道多少!    ▪Linux基本操作 1-----命令行BASH的基本操作
▪CI8.7--硬币组合问题    ▪Ruby on Rails 学习(五)    ▪如何使用W5300实现ADSL连接(二)
▪不允许启动新事务,因为有其他线程正在该会...    ▪getting start with storm 翻译 第六章 part-3    ▪递归求排列和组合(无重复和有重复)
▪工具类之二:RegexpUtils    ▪Coding Interview 8.2    ▪Coding Interview 8.5
▪素因子分解 Prime factorization    ▪C# DllImport的用法    ▪图的相关算法
▪Softmax算法:逻辑回归的扩展    ▪最小生成树---Kruskal算法---挑战程序设计竞赛...    ▪J2EE struts2 登录验证
▪任意两点间的最短路径---floyd_warshall算法    ▪Sqoop实现关系型数据库到hive的数据传输    ▪FFMPEG采集摄像头数据并切片为iPhone的HTTP Stream...
▪Ubuntu 13.04 – Install Jetty 9    ▪TCP/IP笔记之多播与广播    ▪keytool+tomcat配置HTTPS双向证书认证
▪安装phantomjs    ▪Page Redirect Speed Test    ▪windows media player 中播放pls的方法
▪sre_constants.error: unbalanced parenthesis    ▪http headers    ▪Google MapReduce中文版
▪The TCP three-way handshake (connect)/four wave (closed)    ▪网站反爬虫    ▪Log4j实现对Java日志的配置全攻略
▪Bit Map解析    ▪Notepad 快捷键 大全    ▪Eclipse 快捷键技巧 + 重构
▪win7 打开防火墙端口    ▪Linux Shell脚本入门--awk命令详解    ▪Linux Shell脚本入门--Uniq命令
▪Linux(Android NDK)如何避免僵死进程    ▪http Content-Type一览表    ▪Redis实战之征服 Redis + Jedis + Spring (二)
▪Tomcat7.0.40 基于DataSourceRealm的和JDBCRealm的资源...    ▪利用SQOOP将ORACLE到HDFS    ▪django输出 hello world
▪python re    ▪unity3D与网页的交互    ▪内存共享基本演示
▪python join    ▪不再为无限级树结构烦恼,且看此篇    ▪python实现变参
▪打开文件数限制功能不断地制造问题    ▪Arduino Due, Maple and Teensy3.0 的 W5200性能测试    ▪Selenium实例----12306网站测试
▪基于协同过滤的推荐引擎    ▪C4.5决策树    ▪C#HTTP代理的实现之注册表实现
▪nosql和关系型数据库比较?    ▪如何快速比较这两个字符串是否相等?    ▪hdoj 1863 畅通工程 最小生成树---prime算法
 


站内导航:


特别声明:169IT网站部分信息来自互联网,如果侵犯您的权利,请及时告知,本站将立即删除!

©2012-2021,,E-mail:www_#163.com(请将#改为@)

浙ICP备11055608号-3