题目:
Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
分析:先用中序遍历记下所有节点,然后判断此数组是否是已排序的。
代码如下:
void getroot(TreeNode *root,vector<int> &result)
{
if(root->left!=NULL)
{
getroot(root->left,result);
}
result.push_back(root->val);
if(root->right!=NULL)
{
getroot(root->right,result);
}
return;
}
bool isValidBST(TreeNode *root) {
if(root==NULL)return true;
vector<int> result;
getroot(root,result);
for(int i=1;i<result.size();i++)
{
if(result[i-1]>=result[i])
{
return false;
}
}
return true;
}
题目:
Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
代码如下:
bool isSymmetricTree(TreeNode *p, TreeNode *q) {
if(p==NULL&&q==NULL)return true;
if(p==NULL||q==NULL)return false;
if(p->val!=q->val)
{
return false;
}
else
{
return isSymmetricTree(p->left, q->right)&&isSymmetricTree(p->right, q->left);
}
}
bool isSymmetric(TreeNode *root) {
if(root==NULL)return true;
return isSymmetricTree(root->left,root->right);
}
题目:
Given two binary trees, write a function to check if they are equal or not.
Two binary trees are considered equal if they are structurally identical and the nodes have the same value.
代码如下:
bool isSameTree(TreeNode *p, TreeNode *q) {
if(p==NULL&&q==NULL)return true;
if(p==NULL||q==NULL)return false;
if(p->val!=q->val)
{
return false;
}
else
{
return isSameTree(p->left, q->left)&&isSameTree(p->right, q->right);
}
}