当前位置: 编程技术>c/c++/嵌入式
内部排序之堆排序的实现详解
来源: 互联网 发布时间:2014-10-15
本文导语: 堆排序(Heap Sort)只需要一个记录大小的辅助空间,每个待排序的记录仅占有一个存储空间。(1)基本概念a)堆:设有n个元素的序列:{k1, k2, ..., kn}对所有的i=1,2,...,(int)(n/2),当满足下面关系: ...
堆排序(Heap Sort)只需要一个记录大小的辅助空间,每个待排序的记录仅占有一个存储空间。
(1)基本概念
a)堆:设有n个元素的序列:
{k1, k2, ..., kn}
对所有的i=1,2,...,(int)(n/2),当满足下面关系:
ki≤k2i,ki≤k2i+1
或 ki≥k2i,ki≥k2i+1
这样的序列称为堆。
堆的两种类型:
根结点最小的堆----小根堆。
根结点最大的堆----大根堆。
根结点称为堆顶,即:在一棵完全二叉树中,所有非叶结点的值均小于(或均大于)左、右孩子的值。
b)堆排序:是一种树型选择排序,特点是,在排序过程中,把R[1..n]看成是一个完全二叉树的存储结构,利用完全二叉树双亲结点和孩子结点的内在关系,在当前无序区中选择关键字最大(最小)的记录。
2)堆排序步骤:
1、从k-1层的最右非叶结点开始,使关键字值大(或小)的记录逐步向二叉树的上层移动,最大(或小)关键字记录成为树的根结点,使其成为堆。
2、逐步输出根结点,令r[1]=r[i](i=n,,n-1,...,2),在将剩余结点调整成堆。直到输出所有结点。我们称这个自堆顶到叶子的调整过程为“筛选”。
(3)要解决的两个问题:
1、如何由一个无序序列建成一个堆;
2、输出一个根结点后,如何将剩余元素调整成一个堆。
将一个无序序列建成一个堆是一个反复“筛选”的过程。若将此序列看成是一个完全二叉树,则最后一个非终端结点是第floor(n/2)个元素,由此“筛选”只需从第floor(n/2)个元素开始。
堆排序中需一个记录大小的辅助空间,每个待排的记录仅占有一个存储空间。堆排序方法当记录较少时,不值得提倡。当n很大时,效率很高。堆排序是不稳定的。
堆排序的算法和筛选的算法如第二节所示。为使排序结果是非递减有序排列,我们在排序算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1个记录进行筛选,重新将它调整为一个“大顶堆”,然后将选得的一个关键字为最大的记录(也就是第一个元素)与当前最后一个记录交换(全局看是第n-1个),如此往复,直到排序结束。由到,筛选应按关键字较大的孩子结点向下进行。
堆排序的算法描述如下:
#include "iostream"
using namespace std;
#define MAXSIZE 20
typedef struct
{
int key;
//其他数据信息
}RedType;
typedef struct
{
RedType r[MAXSIZE+1];
int length;
}Sqlist;
typedef Sqlist HeapType; //堆采用顺序表存储表示
void HeapAdjust(HeapType &H,int s,int m) //已知H.r[s...m]中记录的关键字出H.r[s].key之外均满足堆的定义,本函数调整H.r[s]的关键字,使H.r[s...m]成为一个大顶堆(对其中记录的关键字而言)
{
int j;
RedType rc;
rc=H.r[s];
for(j=2*s;j1;--i)
{
H.r[0]=H.r[1]; //将堆顶记录和当前未经排序的子序列H.r[1...i]中最后一个记录相互交换
H.r[1]=H.r[i];
H.r[i]=H.r[0];
HeapAdjust(H,1,i-1); //将H.r[1...i-1]重新调整为大顶堆
}
}//HeapSort
void InputL(Sqlist &L)
{
int i;
printf("Please input the length:");
scanf("%d",&L.length);
printf("Please input the data needed to sort:n");
for(i=1;i
java map(HashMap TreeMap)用法:初始化,遍历和排序详解
oracle指定排序的方法详解
linux下top命令详解包括top命令参数使用及结果(virt,res,shr)排序举例说明
深入Java冒泡排序与选择排序的区别详解
深入IComparable与IComparer的排序实例详解
快速排序的深入详解以及java实现
ASP.NET4 GridView的四种排序样式详解
C++实现数组的排序/插入重新排序/以及逆置操作详解
java如何对map进行排序详解(map集合的使用)
C语言实现排序算法之归并排序详解
C++快速排序的分析与优化详解
C++实现基数排序的方法详解
深入单链表的快速排序详解
解决JTable排序问题的方法详解
(1)基本概念
a)堆:设有n个元素的序列:
{k1, k2, ..., kn}
对所有的i=1,2,...,(int)(n/2),当满足下面关系:
ki≤k2i,ki≤k2i+1
或 ki≥k2i,ki≥k2i+1
这样的序列称为堆。
堆的两种类型:
根结点最小的堆----小根堆。
根结点最大的堆----大根堆。
根结点称为堆顶,即:在一棵完全二叉树中,所有非叶结点的值均小于(或均大于)左、右孩子的值。
b)堆排序:是一种树型选择排序,特点是,在排序过程中,把R[1..n]看成是一个完全二叉树的存储结构,利用完全二叉树双亲结点和孩子结点的内在关系,在当前无序区中选择关键字最大(最小)的记录。
2)堆排序步骤:
1、从k-1层的最右非叶结点开始,使关键字值大(或小)的记录逐步向二叉树的上层移动,最大(或小)关键字记录成为树的根结点,使其成为堆。
2、逐步输出根结点,令r[1]=r[i](i=n,,n-1,...,2),在将剩余结点调整成堆。直到输出所有结点。我们称这个自堆顶到叶子的调整过程为“筛选”。
(3)要解决的两个问题:
1、如何由一个无序序列建成一个堆;
2、输出一个根结点后,如何将剩余元素调整成一个堆。
将一个无序序列建成一个堆是一个反复“筛选”的过程。若将此序列看成是一个完全二叉树,则最后一个非终端结点是第floor(n/2)个元素,由此“筛选”只需从第floor(n/2)个元素开始。
堆排序中需一个记录大小的辅助空间,每个待排的记录仅占有一个存储空间。堆排序方法当记录较少时,不值得提倡。当n很大时,效率很高。堆排序是不稳定的。
堆排序的算法和筛选的算法如第二节所示。为使排序结果是非递减有序排列,我们在排序算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1个记录进行筛选,重新将它调整为一个“大顶堆”,然后将选得的一个关键字为最大的记录(也就是第一个元素)与当前最后一个记录交换(全局看是第n-1个),如此往复,直到排序结束。由到,筛选应按关键字较大的孩子结点向下进行。
堆排序的算法描述如下:
用C语言代码实现如下:
代码如下:
#include "iostream"
using namespace std;
#define MAXSIZE 20
typedef struct
{
int key;
//其他数据信息
}RedType;
typedef struct
{
RedType r[MAXSIZE+1];
int length;
}Sqlist;
typedef Sqlist HeapType; //堆采用顺序表存储表示
void HeapAdjust(HeapType &H,int s,int m) //已知H.r[s...m]中记录的关键字出H.r[s].key之外均满足堆的定义,本函数调整H.r[s]的关键字,使H.r[s...m]成为一个大顶堆(对其中记录的关键字而言)
{
int j;
RedType rc;
rc=H.r[s];
for(j=2*s;j1;--i)
{
H.r[0]=H.r[1]; //将堆顶记录和当前未经排序的子序列H.r[1...i]中最后一个记录相互交换
H.r[1]=H.r[i];
H.r[i]=H.r[0];
HeapAdjust(H,1,i-1); //将H.r[1...i-1]重新调整为大顶堆
}
}//HeapSort
void InputL(Sqlist &L)
{
int i;
printf("Please input the length:");
scanf("%d",&L.length);
printf("Please input the data needed to sort:n");
for(i=1;i